| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjnorm.1 |
⊢ 𝐻 ∈ Cℋ |
| 2 |
|
pjnorm.2 |
⊢ 𝐴 ∈ ℋ |
| 3 |
1 2
|
pjnormi |
⊢ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ≤ ( normℎ ‘ 𝐴 ) |
| 4 |
3
|
biantrur |
⊢ ( ( normℎ ‘ 𝐴 ) ≠ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↔ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ≤ ( normℎ ‘ 𝐴 ) ∧ ( normℎ ‘ 𝐴 ) ≠ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) |
| 5 |
1 2
|
pjoc1i |
⊢ ( 𝐴 ∈ 𝐻 ↔ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ) |
| 6 |
1 2
|
pjpythi |
⊢ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) |
| 7 |
|
sq0 |
⊢ ( 0 ↑ 2 ) = 0 |
| 8 |
7
|
oveq2i |
⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( 0 ↑ 2 ) ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + 0 ) |
| 9 |
1 2
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 10 |
9
|
normcli |
⊢ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ℝ |
| 11 |
10
|
resqcli |
⊢ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ |
| 12 |
11
|
recni |
⊢ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ∈ ℂ |
| 13 |
12
|
addridi |
⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + 0 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) |
| 14 |
8 13
|
eqtr2i |
⊢ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( 0 ↑ 2 ) ) |
| 15 |
6 14
|
eqeq12i |
⊢ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ↔ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( 0 ↑ 2 ) ) ) |
| 16 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
| 17 |
16 2
|
pjhclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ |
| 18 |
17
|
normcli |
⊢ ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ∈ ℝ |
| 19 |
18
|
resqcli |
⊢ ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ |
| 20 |
19
|
recni |
⊢ ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ∈ ℂ |
| 21 |
|
0cn |
⊢ 0 ∈ ℂ |
| 22 |
21
|
sqcli |
⊢ ( 0 ↑ 2 ) ∈ ℂ |
| 23 |
12 20 22
|
addcani |
⊢ ( ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( 0 ↑ 2 ) ) ↔ ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) = ( 0 ↑ 2 ) ) |
| 24 |
|
normge0 |
⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
| 25 |
17 24
|
ax-mp |
⊢ 0 ≤ ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) |
| 26 |
|
0le0 |
⊢ 0 ≤ 0 |
| 27 |
|
0re |
⊢ 0 ∈ ℝ |
| 28 |
18 27
|
sq11i |
⊢ ( ( 0 ≤ ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ∧ 0 ≤ 0 ) → ( ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) = ( 0 ↑ 2 ) ↔ ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 0 ) ) |
| 29 |
25 26 28
|
mp2an |
⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) = ( 0 ↑ 2 ) ↔ ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 0 ) |
| 30 |
17
|
norm-i-i |
⊢ ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 0 ↔ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ) |
| 31 |
23 29 30
|
3bitri |
⊢ ( ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( 0 ↑ 2 ) ) ↔ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ) |
| 32 |
15 31
|
bitr2i |
⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ↔ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ) |
| 33 |
|
normge0 |
⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝐴 ) ) |
| 34 |
2 33
|
ax-mp |
⊢ 0 ≤ ( normℎ ‘ 𝐴 ) |
| 35 |
|
normge0 |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 36 |
9 35
|
ax-mp |
⊢ 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
| 37 |
2
|
normcli |
⊢ ( normℎ ‘ 𝐴 ) ∈ ℝ |
| 38 |
37 10
|
sq11i |
⊢ ( ( 0 ≤ ( normℎ ‘ 𝐴 ) ∧ 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) → ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ↔ ( normℎ ‘ 𝐴 ) = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) |
| 39 |
34 36 38
|
mp2an |
⊢ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ↔ ( normℎ ‘ 𝐴 ) = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 40 |
5 32 39
|
3bitri |
⊢ ( 𝐴 ∈ 𝐻 ↔ ( normℎ ‘ 𝐴 ) = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 41 |
40
|
necon3bbii |
⊢ ( ¬ 𝐴 ∈ 𝐻 ↔ ( normℎ ‘ 𝐴 ) ≠ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 42 |
10 37
|
ltleni |
⊢ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) < ( normℎ ‘ 𝐴 ) ↔ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ≤ ( normℎ ‘ 𝐴 ) ∧ ( normℎ ‘ 𝐴 ) ≠ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) |
| 43 |
4 41 42
|
3bitr4i |
⊢ ( ¬ 𝐴 ∈ 𝐻 ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) < ( normℎ ‘ 𝐴 ) ) |