Step |
Hyp |
Ref |
Expression |
1 |
|
pjnorm.1 |
⊢ 𝐻 ∈ Cℋ |
2 |
|
pjnorm.2 |
⊢ 𝐴 ∈ ℋ |
3 |
1 2
|
pjnormi |
⊢ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ≤ ( normℎ ‘ 𝐴 ) |
4 |
3
|
biantrur |
⊢ ( ( normℎ ‘ 𝐴 ) ≠ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↔ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ≤ ( normℎ ‘ 𝐴 ) ∧ ( normℎ ‘ 𝐴 ) ≠ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) |
5 |
1 2
|
pjoc1i |
⊢ ( 𝐴 ∈ 𝐻 ↔ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ) |
6 |
1 2
|
pjpythi |
⊢ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) |
7 |
|
sq0 |
⊢ ( 0 ↑ 2 ) = 0 |
8 |
7
|
oveq2i |
⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( 0 ↑ 2 ) ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + 0 ) |
9 |
1 2
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
10 |
9
|
normcli |
⊢ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ℝ |
11 |
10
|
resqcli |
⊢ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ |
12 |
11
|
recni |
⊢ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ∈ ℂ |
13 |
12
|
addid1i |
⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + 0 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) |
14 |
8 13
|
eqtr2i |
⊢ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( 0 ↑ 2 ) ) |
15 |
6 14
|
eqeq12i |
⊢ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ↔ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( 0 ↑ 2 ) ) ) |
16 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
17 |
16 2
|
pjhclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ |
18 |
17
|
normcli |
⊢ ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ∈ ℝ |
19 |
18
|
resqcli |
⊢ ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ |
20 |
19
|
recni |
⊢ ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ∈ ℂ |
21 |
|
0cn |
⊢ 0 ∈ ℂ |
22 |
21
|
sqcli |
⊢ ( 0 ↑ 2 ) ∈ ℂ |
23 |
12 20 22
|
addcani |
⊢ ( ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( 0 ↑ 2 ) ) ↔ ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) = ( 0 ↑ 2 ) ) |
24 |
|
normge0 |
⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
25 |
17 24
|
ax-mp |
⊢ 0 ≤ ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) |
26 |
|
0le0 |
⊢ 0 ≤ 0 |
27 |
|
0re |
⊢ 0 ∈ ℝ |
28 |
18 27
|
sq11i |
⊢ ( ( 0 ≤ ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ∧ 0 ≤ 0 ) → ( ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) = ( 0 ↑ 2 ) ↔ ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 0 ) ) |
29 |
25 26 28
|
mp2an |
⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) = ( 0 ↑ 2 ) ↔ ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 0 ) |
30 |
17
|
norm-i-i |
⊢ ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 0 ↔ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ) |
31 |
23 29 30
|
3bitri |
⊢ ( ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( 0 ↑ 2 ) ) ↔ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ) |
32 |
15 31
|
bitr2i |
⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ↔ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ) |
33 |
|
normge0 |
⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝐴 ) ) |
34 |
2 33
|
ax-mp |
⊢ 0 ≤ ( normℎ ‘ 𝐴 ) |
35 |
|
normge0 |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
36 |
9 35
|
ax-mp |
⊢ 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
37 |
2
|
normcli |
⊢ ( normℎ ‘ 𝐴 ) ∈ ℝ |
38 |
37 10
|
sq11i |
⊢ ( ( 0 ≤ ( normℎ ‘ 𝐴 ) ∧ 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) → ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ↔ ( normℎ ‘ 𝐴 ) = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) |
39 |
34 36 38
|
mp2an |
⊢ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ↔ ( normℎ ‘ 𝐴 ) = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
40 |
5 32 39
|
3bitri |
⊢ ( 𝐴 ∈ 𝐻 ↔ ( normℎ ‘ 𝐴 ) = ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
41 |
40
|
necon3bbii |
⊢ ( ¬ 𝐴 ∈ 𝐻 ↔ ( normℎ ‘ 𝐴 ) ≠ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
42 |
10 37
|
ltleni |
⊢ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) < ( normℎ ‘ 𝐴 ) ↔ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ≤ ( normℎ ‘ 𝐴 ) ∧ ( normℎ ‘ 𝐴 ) ≠ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) |
43 |
4 41 42
|
3bitr4i |
⊢ ( ¬ 𝐴 ∈ 𝐻 ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) < ( normℎ ‘ 𝐴 ) ) |