Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( projℎ ‘ 𝐻 ) = ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) |
2 |
1
|
fveq1d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) |
3 |
2
|
fveq2d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) ) |
4 |
3
|
breq1d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ≤ ( normℎ ‘ 𝐴 ) ↔ ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) ≤ ( normℎ ‘ 𝐴 ) ) ) |
5 |
|
2fveq3 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) = ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( normℎ ‘ 𝐴 ) = ( normℎ ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
7 |
5 6
|
breq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) ≤ ( normℎ ‘ 𝐴 ) ↔ ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ≤ ( normℎ ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
8 |
|
ifchhv |
⊢ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ∈ Cℋ |
9 |
|
ifhvhv0 |
⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ |
10 |
8 9
|
pjnormi |
⊢ ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ≤ ( normℎ ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) |
11 |
4 7 10
|
dedth2h |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ≤ ( normℎ ‘ 𝐴 ) ) |