Metamath Proof Explorer


Theorem pjnormi

Description: The norm of the projection is less than or equal to the norm. (Contributed by NM, 27-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjnorm.1 𝐻C
pjnorm.2 𝐴 ∈ ℋ
Assertion pjnormi ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ≤ ( norm𝐴 )

Proof

Step Hyp Ref Expression
1 pjnorm.1 𝐻C
2 pjnorm.2 𝐴 ∈ ℋ
3 1 2 pjhclii ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ
4 1 choccli ( ⊥ ‘ 𝐻 ) ∈ C
5 4 2 pjhclii ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ
6 3 5 pm3.2i ( ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ ∧ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ )
7 2 2 pjorthi ( 𝐻C → ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 0 )
8 1 7 ax-mp ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 0
9 normpyc ( ( ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ ∧ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ ) → ( ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 0 → ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ≤ ( norm ‘ ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ) )
10 6 8 9 mp2 ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ≤ ( norm ‘ ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) )
11 1 2 pjpji 𝐴 = ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) )
12 11 fveq2i ( norm𝐴 ) = ( norm ‘ ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) )
13 10 12 breqtrri ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ≤ ( norm𝐴 )