| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjch1 |
⊢ ( 𝐴 ∈ ℋ → ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) = 𝐴 ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) = 𝐴 ) |
| 3 |
|
axpjpj |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
| 4 |
2 3
|
eqtr2d |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) |
| 5 |
|
helch |
⊢ ℋ ∈ Cℋ |
| 6 |
5
|
pjcli |
⊢ ( 𝐴 ∈ ℋ → ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ∈ ℋ ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ∈ ℋ ) |
| 8 |
|
pjhcl |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ) |
| 9 |
|
choccl |
⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ 𝐻 ) ∈ Cℋ ) |
| 10 |
|
pjhcl |
⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ ) |
| 11 |
9 10
|
sylan |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ ) |
| 12 |
|
hvsubadd |
⊢ ( ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ∈ ℋ ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ ) → ( ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ↔ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) ) |
| 13 |
7 8 11 12
|
syl3anc |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ↔ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) ) |
| 14 |
4 13
|
mpbird |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) |
| 15 |
14
|
eqcomd |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |