Metamath Proof Explorer


Theorem pjo

Description: The orthogonal projection. Lemma 4.4(i) of Beran p. 111. (Contributed by NM, 30-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion pjo ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( ( proj ‘ ℋ ) ‘ 𝐴 ) − ( ( proj𝐻 ) ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 pjch1 ( 𝐴 ∈ ℋ → ( ( proj ‘ ℋ ) ‘ 𝐴 ) = 𝐴 )
2 1 adantl ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( proj ‘ ℋ ) ‘ 𝐴 ) = 𝐴 )
3 axpjpj ( ( 𝐻C𝐴 ∈ ℋ ) → 𝐴 = ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) )
4 2 3 eqtr2d ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( ( proj ‘ ℋ ) ‘ 𝐴 ) )
5 helch ℋ ∈ C
6 5 pjcli ( 𝐴 ∈ ℋ → ( ( proj ‘ ℋ ) ‘ 𝐴 ) ∈ ℋ )
7 6 adantl ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( proj ‘ ℋ ) ‘ 𝐴 ) ∈ ℋ )
8 pjhcl ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ )
9 choccl ( 𝐻C → ( ⊥ ‘ 𝐻 ) ∈ C )
10 pjhcl ( ( ( ⊥ ‘ 𝐻 ) ∈ C𝐴 ∈ ℋ ) → ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ )
11 9 10 sylan ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ )
12 hvsubadd ( ( ( ( proj ‘ ℋ ) ‘ 𝐴 ) ∈ ℋ ∧ ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ ∧ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ ) → ( ( ( ( proj ‘ ℋ ) ‘ 𝐴 ) − ( ( proj𝐻 ) ‘ 𝐴 ) ) = ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ↔ ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( ( proj ‘ ℋ ) ‘ 𝐴 ) ) )
13 7 8 11 12 syl3anc ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( ( ( proj ‘ ℋ ) ‘ 𝐴 ) − ( ( proj𝐻 ) ‘ 𝐴 ) ) = ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ↔ ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( ( proj ‘ ℋ ) ‘ 𝐴 ) ) )
14 4 13 mpbird ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( ( proj ‘ ℋ ) ‘ 𝐴 ) − ( ( proj𝐻 ) ‘ 𝐴 ) ) = ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) )
15 14 eqcomd ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( ( proj ‘ ℋ ) ‘ 𝐴 ) − ( ( proj𝐻 ) ‘ 𝐴 ) ) )