Metamath Proof Explorer


Theorem pjoc1

Description: Projection of a vector in the orthocomplement of the projection subspace. (Contributed by NM, 6-Nov-1999) (New usage is discouraged.)

Ref Expression
Assertion pjoc1 ( ( 𝐻C𝐴 ∈ ℋ ) → ( 𝐴𝐻 ↔ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0 ) )

Proof

Step Hyp Ref Expression
1 eleq2 ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( 𝐴𝐻𝐴 ∈ if ( 𝐻C , 𝐻 , ℋ ) ) )
2 2fveq3 ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( proj ‘ ( ⊥ ‘ 𝐻 ) ) = ( proj ‘ ( ⊥ ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ) )
3 2 fveq1d ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( proj ‘ ( ⊥ ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) )
4 3 eqeq1d ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0 ↔ ( ( proj ‘ ( ⊥ ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) = 0 ) )
5 1 4 bibi12d ( 𝐻 = if ( 𝐻C , 𝐻 , ℋ ) → ( ( 𝐴𝐻 ↔ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0 ) ↔ ( 𝐴 ∈ if ( 𝐻C , 𝐻 , ℋ ) ↔ ( ( proj ‘ ( ⊥ ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) = 0 ) ) )
6 eleq1 ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( 𝐴 ∈ if ( 𝐻C , 𝐻 , ℋ ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ if ( 𝐻C , 𝐻 , ℋ ) ) )
7 fveqeq2 ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( ( proj ‘ ( ⊥ ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) = 0 ↔ ( ( proj ‘ ( ⊥ ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = 0 ) )
8 6 7 bibi12d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( 𝐴 ∈ if ( 𝐻C , 𝐻 , ℋ ) ↔ ( ( proj ‘ ( ⊥ ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) = 0 ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ if ( 𝐻C , 𝐻 , ℋ ) ↔ ( ( proj ‘ ( ⊥ ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = 0 ) ) )
9 ifchhv if ( 𝐻C , 𝐻 , ℋ ) ∈ C
10 ifhvhv0 if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ ℋ
11 9 10 pjoc1i ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ if ( 𝐻C , 𝐻 , ℋ ) ↔ ( ( proj ‘ ( ⊥ ‘ if ( 𝐻C , 𝐻 , ℋ ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = 0 )
12 5 8 11 dedth2h ( ( 𝐻C𝐴 ∈ ℋ ) → ( 𝐴𝐻 ↔ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0 ) )