Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( 𝐴 ∈ 𝐻 ↔ 𝐴 ∈ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) |
2 |
|
2fveq3 |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) = ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ) |
3 |
2
|
fveq1d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) ) |
4 |
3
|
eqeq1d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ↔ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) = 0ℎ ) ) |
5 |
1 4
|
bibi12d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( 𝐴 ∈ 𝐻 ↔ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ) ↔ ( 𝐴 ∈ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ↔ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) = 0ℎ ) ) ) |
6 |
|
eleq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 ∈ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) |
7 |
|
fveqeq2 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) = 0ℎ ↔ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = 0ℎ ) ) |
8 |
6 7
|
bibi12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 ∈ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ↔ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) = 0ℎ ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ↔ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = 0ℎ ) ) ) |
9 |
|
ifchhv |
⊢ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ∈ Cℋ |
10 |
|
ifhvhv0 |
⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ |
11 |
9 10
|
pjoc1i |
⊢ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ↔ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = 0ℎ ) |
12 |
5 8 11
|
dedth2h |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ∈ 𝐻 ↔ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ) ) |