Description: Projection of a vector in the orthocomplement of the projection subspace. Lemma 4.4(iii) of Beran p. 111. (Contributed by NM, 27-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoc2.1 | ⊢ 𝐻 ∈ Cℋ | |
| pjoc2.2 | ⊢ 𝐴 ∈ ℋ | ||
| Assertion | pjoc2i | ⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 0ℎ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pjoc2.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | pjoc2.2 | ⊢ 𝐴 ∈ ℋ | |
| 3 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ | 
| 4 | 3 2 | pjoc1i | ⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( projℎ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) = 0ℎ ) | 
| 5 | 1 | pjococi | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) = 𝐻 | 
| 6 | 5 | fveq2i | ⊢ ( projℎ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( projℎ ‘ 𝐻 ) | 
| 7 | 6 | fveq1i | ⊢ ( ( projℎ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) | 
| 8 | 7 | eqeq1i | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) = 0ℎ ↔ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 0ℎ ) | 
| 9 | 4 8 | bitri | ⊢ ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 0ℎ ) |