Metamath Proof Explorer


Theorem pjocvec

Description: The set of vectors belonging to the orthocomplemented subspace of a projection. Second part of Theorem 27.3 of Halmos p. 45. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion pjocvec ( 𝐻C → ( ⊥ ‘ 𝐻 ) = { 𝑥 ∈ ℋ ∣ ( ( proj𝐻 ) ‘ 𝑥 ) = 0 } )

Proof

Step Hyp Ref Expression
1 choccl ( 𝐻C → ( ⊥ ‘ 𝐻 ) ∈ C )
2 chss ( ( ⊥ ‘ 𝐻 ) ∈ C → ( ⊥ ‘ 𝐻 ) ⊆ ℋ )
3 1 2 syl ( 𝐻C → ( ⊥ ‘ 𝐻 ) ⊆ ℋ )
4 sseqin2 ( ( ⊥ ‘ 𝐻 ) ⊆ ℋ ↔ ( ℋ ∩ ( ⊥ ‘ 𝐻 ) ) = ( ⊥ ‘ 𝐻 ) )
5 3 4 sylib ( 𝐻C → ( ℋ ∩ ( ⊥ ‘ 𝐻 ) ) = ( ⊥ ‘ 𝐻 ) )
6 pjoc2 ( ( 𝐻C𝑥 ∈ ℋ ) → ( 𝑥 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( proj𝐻 ) ‘ 𝑥 ) = 0 ) )
7 6 rabbi2dva ( 𝐻C → ( ℋ ∩ ( ⊥ ‘ 𝐻 ) ) = { 𝑥 ∈ ℋ ∣ ( ( proj𝐻 ) ‘ 𝑥 ) = 0 } )
8 5 7 eqtr3d ( 𝐻C → ( ⊥ ‘ 𝐻 ) = { 𝑥 ∈ ℋ ∣ ( ( proj𝐻 ) ‘ 𝑥 ) = 0 } )