Step |
Hyp |
Ref |
Expression |
1 |
|
choccl |
⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ 𝐻 ) ∈ Cℋ ) |
2 |
|
chss |
⊢ ( ( ⊥ ‘ 𝐻 ) ∈ Cℋ → ( ⊥ ‘ 𝐻 ) ⊆ ℋ ) |
3 |
1 2
|
syl |
⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ 𝐻 ) ⊆ ℋ ) |
4 |
|
sseqin2 |
⊢ ( ( ⊥ ‘ 𝐻 ) ⊆ ℋ ↔ ( ℋ ∩ ( ⊥ ‘ 𝐻 ) ) = ( ⊥ ‘ 𝐻 ) ) |
5 |
3 4
|
sylib |
⊢ ( 𝐻 ∈ Cℋ → ( ℋ ∩ ( ⊥ ‘ 𝐻 ) ) = ( ⊥ ‘ 𝐻 ) ) |
6 |
|
pjoc2 |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) = 0ℎ ) ) |
7 |
6
|
rabbi2dva |
⊢ ( 𝐻 ∈ Cℋ → ( ℋ ∩ ( ⊥ ‘ 𝐻 ) ) = { 𝑥 ∈ ℋ ∣ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) = 0ℎ } ) |
8 |
5 7
|
eqtr3d |
⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ 𝐻 ) = { 𝑥 ∈ ℋ ∣ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) = 0ℎ } ) |