Description: The inner product of projections on orthogonal subspaces vanishes. (Contributed by NM, 1-Nov-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoi0.1 | ⊢ 𝐺 ∈ Cℋ | |
| pjoi0.2 | ⊢ 𝐻 ∈ Cℋ | ||
| pjoi0.3 | ⊢ 𝐴 ∈ ℋ | ||
| Assertion | pjoi0i | ⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoi0.1 | ⊢ 𝐺 ∈ Cℋ | |
| 2 | pjoi0.2 | ⊢ 𝐻 ∈ Cℋ | |
| 3 | pjoi0.3 | ⊢ 𝐴 ∈ ℋ | |
| 4 | 1 2 3 | 3pm3.2i | ⊢ ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) |
| 5 | pjoi0 | ⊢ ( ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 0 ) | |
| 6 | 4 5 | mpan | ⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 0 ) |