Metamath Proof Explorer


Theorem pjoi0i

Description: The inner product of projections on orthogonal subspaces vanishes. (Contributed by NM, 1-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjoi0.1 𝐺C
pjoi0.2 𝐻C
pjoi0.3 𝐴 ∈ ℋ
Assertion pjoi0i ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( ( proj𝐺 ) ‘ 𝐴 ) ·ih ( ( proj𝐻 ) ‘ 𝐴 ) ) = 0 )

Proof

Step Hyp Ref Expression
1 pjoi0.1 𝐺C
2 pjoi0.2 𝐻C
3 pjoi0.3 𝐴 ∈ ℋ
4 1 2 3 3pm3.2i ( 𝐺C𝐻C𝐴 ∈ ℋ )
5 pjoi0 ( ( ( 𝐺C𝐻C𝐴 ∈ ℋ ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → ( ( ( proj𝐺 ) ‘ 𝐴 ) ·ih ( ( proj𝐻 ) ‘ 𝐴 ) ) = 0 )
6 4 5 mpan ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( ( proj𝐺 ) ‘ 𝐴 ) ·ih ( ( proj𝐻 ) ‘ 𝐴 ) ) = 0 )