Description: The inner product of projections on orthogonal subspaces vanishes. (Contributed by NM, 1-Nov-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pjoi0.1 | ⊢ 𝐺 ∈ Cℋ | |
pjoi0.2 | ⊢ 𝐻 ∈ Cℋ | ||
pjoi0.3 | ⊢ 𝐴 ∈ ℋ | ||
Assertion | pjoi0i | ⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjoi0.1 | ⊢ 𝐺 ∈ Cℋ | |
2 | pjoi0.2 | ⊢ 𝐻 ∈ Cℋ | |
3 | pjoi0.3 | ⊢ 𝐴 ∈ ℋ | |
4 | 1 2 3 | 3pm3.2i | ⊢ ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) |
5 | pjoi0 | ⊢ ( ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 0 ) | |
6 | 4 5 | mpan | ⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 0 ) |