Metamath Proof Explorer


Theorem pjoml

Description: Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of Kalmbach p. 22. Derived using projections; compare omlsi . (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion pjoml ( ( ( 𝐴C𝐵S ) ∧ ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) ) → 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 sseq1 ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝐴𝐵 ↔ if ( 𝐴C , 𝐴 , 0 ) ⊆ 𝐵 ) )
2 fveq2 ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) )
3 2 ineq2d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = ( 𝐵 ∩ ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ) )
4 3 eqeq1d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ↔ ( 𝐵 ∩ ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ) = 0 ) )
5 1 4 anbi12d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) ↔ ( if ( 𝐴C , 𝐴 , 0 ) ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ) = 0 ) ) )
6 eqeq1 ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝐴 = 𝐵 ↔ if ( 𝐴C , 𝐴 , 0 ) = 𝐵 ) )
7 5 6 imbi12d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) → 𝐴 = 𝐵 ) ↔ ( ( if ( 𝐴C , 𝐴 , 0 ) ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ) = 0 ) → if ( 𝐴C , 𝐴 , 0 ) = 𝐵 ) ) )
8 sseq2 ( 𝐵 = if ( 𝐵S , 𝐵 , 0 ) → ( if ( 𝐴C , 𝐴 , 0 ) ⊆ 𝐵 ↔ if ( 𝐴C , 𝐴 , 0 ) ⊆ if ( 𝐵S , 𝐵 , 0 ) ) )
9 ineq1 ( 𝐵 = if ( 𝐵S , 𝐵 , 0 ) → ( 𝐵 ∩ ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ) = ( if ( 𝐵S , 𝐵 , 0 ) ∩ ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ) )
10 9 eqeq1d ( 𝐵 = if ( 𝐵S , 𝐵 , 0 ) → ( ( 𝐵 ∩ ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ) = 0 ↔ ( if ( 𝐵S , 𝐵 , 0 ) ∩ ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ) = 0 ) )
11 8 10 anbi12d ( 𝐵 = if ( 𝐵S , 𝐵 , 0 ) → ( ( if ( 𝐴C , 𝐴 , 0 ) ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ) = 0 ) ↔ ( if ( 𝐴C , 𝐴 , 0 ) ⊆ if ( 𝐵S , 𝐵 , 0 ) ∧ ( if ( 𝐵S , 𝐵 , 0 ) ∩ ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ) = 0 ) ) )
12 eqeq2 ( 𝐵 = if ( 𝐵S , 𝐵 , 0 ) → ( if ( 𝐴C , 𝐴 , 0 ) = 𝐵 ↔ if ( 𝐴C , 𝐴 , 0 ) = if ( 𝐵S , 𝐵 , 0 ) ) )
13 11 12 imbi12d ( 𝐵 = if ( 𝐵S , 𝐵 , 0 ) → ( ( ( if ( 𝐴C , 𝐴 , 0 ) ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ) = 0 ) → if ( 𝐴C , 𝐴 , 0 ) = 𝐵 ) ↔ ( ( if ( 𝐴C , 𝐴 , 0 ) ⊆ if ( 𝐵S , 𝐵 , 0 ) ∧ ( if ( 𝐵S , 𝐵 , 0 ) ∩ ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ) = 0 ) → if ( 𝐴C , 𝐴 , 0 ) = if ( 𝐵S , 𝐵 , 0 ) ) ) )
14 h0elch 0C
15 14 elimel if ( 𝐴C , 𝐴 , 0 ) ∈ C
16 h0elsh 0S
17 16 elimel if ( 𝐵S , 𝐵 , 0 ) ∈ S
18 15 17 pjomli ( ( if ( 𝐴C , 𝐴 , 0 ) ⊆ if ( 𝐵S , 𝐵 , 0 ) ∧ ( if ( 𝐵S , 𝐵 , 0 ) ∩ ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ) = 0 ) → if ( 𝐴C , 𝐴 , 0 ) = if ( 𝐵S , 𝐵 , 0 ) )
19 7 13 18 dedth2h ( ( 𝐴C𝐵S ) → ( ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) → 𝐴 = 𝐵 ) )
20 19 imp ( ( ( 𝐴C𝐵S ) ∧ ( 𝐴𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = 0 ) ) → 𝐴 = 𝐵 )