Metamath Proof Explorer


Theorem pjoml5

Description: The orthomodular law. Remark in Kalmbach p. 22. (Contributed by NM, 12-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion pjoml5 ( ( 𝐴C𝐵C ) → ( 𝐴 ( ( ⊥ ‘ 𝐴 ) ∩ ( 𝐴 𝐵 ) ) ) = ( 𝐴 𝐵 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐴C𝐵C ) → 𝐴C )
2 chjcl ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵 ) ∈ C )
3 chub1 ( ( 𝐴C𝐵C ) → 𝐴 ⊆ ( 𝐴 𝐵 ) )
4 pjoml2 ( ( 𝐴C ∧ ( 𝐴 𝐵 ) ∈ C𝐴 ⊆ ( 𝐴 𝐵 ) ) → ( 𝐴 ( ( ⊥ ‘ 𝐴 ) ∩ ( 𝐴 𝐵 ) ) ) = ( 𝐴 𝐵 ) )
5 1 2 3 4 syl3anc ( ( 𝐴C𝐵C ) → ( 𝐴 ( ( ⊥ ‘ 𝐴 ) ∩ ( 𝐴 𝐵 ) ) ) = ( 𝐴 𝐵 ) )