| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pjoml2.1 | 
							⊢ 𝐴  ∈   Cℋ   | 
						
						
							| 2 | 
							
								
							 | 
							pjoml2.2 | 
							⊢ 𝐵  ∈   Cℋ   | 
						
						
							| 3 | 
							
								1
							 | 
							choccli | 
							⊢ ( ⊥ ‘ 𝐴 )  ∈   Cℋ   | 
						
						
							| 4 | 
							
								3 2
							 | 
							chincli | 
							⊢ ( ( ⊥ ‘ 𝐴 )  ∩  𝐵 )  ∈   Cℋ   | 
						
						
							| 5 | 
							
								1 2
							 | 
							pjoml2i | 
							⊢ ( 𝐴  ⊆  𝐵  →  ( 𝐴  ∨ℋ  ( ( ⊥ ‘ 𝐴 )  ∩  𝐵 ) )  =  𝐵 )  | 
						
						
							| 6 | 
							
								2
							 | 
							choccli | 
							⊢ ( ⊥ ‘ 𝐵 )  ∈   Cℋ   | 
						
						
							| 7 | 
							
								1 6
							 | 
							chub1i | 
							⊢ 𝐴  ⊆  ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) )  | 
						
						
							| 8 | 
							
								1 2
							 | 
							chdmm2i | 
							⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 )  ∩  𝐵 ) )  =  ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							sseqtrri | 
							⊢ 𝐴  ⊆  ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 )  ∩  𝐵 ) )  | 
						
						
							| 10 | 
							
								5 9
							 | 
							jctil | 
							⊢ ( 𝐴  ⊆  𝐵  →  ( 𝐴  ⊆  ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 )  ∩  𝐵 ) )  ∧  ( 𝐴  ∨ℋ  ( ( ⊥ ‘ 𝐴 )  ∩  𝐵 ) )  =  𝐵 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  ( ( ⊥ ‘ 𝐴 )  ∩  𝐵 )  →  ( ⊥ ‘ 𝑥 )  =  ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 )  ∩  𝐵 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							sseq2d | 
							⊢ ( 𝑥  =  ( ( ⊥ ‘ 𝐴 )  ∩  𝐵 )  →  ( 𝐴  ⊆  ( ⊥ ‘ 𝑥 )  ↔  𝐴  ⊆  ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 )  ∩  𝐵 ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑥  =  ( ( ⊥ ‘ 𝐴 )  ∩  𝐵 )  →  ( 𝐴  ∨ℋ  𝑥 )  =  ( 𝐴  ∨ℋ  ( ( ⊥ ‘ 𝐴 )  ∩  𝐵 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							eqeq1d | 
							⊢ ( 𝑥  =  ( ( ⊥ ‘ 𝐴 )  ∩  𝐵 )  →  ( ( 𝐴  ∨ℋ  𝑥 )  =  𝐵  ↔  ( 𝐴  ∨ℋ  ( ( ⊥ ‘ 𝐴 )  ∩  𝐵 ) )  =  𝐵 ) )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							anbi12d | 
							⊢ ( 𝑥  =  ( ( ⊥ ‘ 𝐴 )  ∩  𝐵 )  →  ( ( 𝐴  ⊆  ( ⊥ ‘ 𝑥 )  ∧  ( 𝐴  ∨ℋ  𝑥 )  =  𝐵 )  ↔  ( 𝐴  ⊆  ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 )  ∩  𝐵 ) )  ∧  ( 𝐴  ∨ℋ  ( ( ⊥ ‘ 𝐴 )  ∩  𝐵 ) )  =  𝐵 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							rspcev | 
							⊢ ( ( ( ( ⊥ ‘ 𝐴 )  ∩  𝐵 )  ∈   Cℋ   ∧  ( 𝐴  ⊆  ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 )  ∩  𝐵 ) )  ∧  ( 𝐴  ∨ℋ  ( ( ⊥ ‘ 𝐴 )  ∩  𝐵 ) )  =  𝐵 ) )  →  ∃ 𝑥  ∈   Cℋ  ( 𝐴  ⊆  ( ⊥ ‘ 𝑥 )  ∧  ( 𝐴  ∨ℋ  𝑥 )  =  𝐵 ) )  | 
						
						
							| 17 | 
							
								4 10 16
							 | 
							sylancr | 
							⊢ ( 𝐴  ⊆  𝐵  →  ∃ 𝑥  ∈   Cℋ  ( 𝐴  ⊆  ( ⊥ ‘ 𝑥 )  ∧  ( 𝐴  ∨ℋ  𝑥 )  =  𝐵 ) )  |