Metamath Proof Explorer


Theorem pjop

Description: Orthocomplement projection in terms of projection. (Contributed by NM, 5-Nov-1999) (New usage is discouraged.)

Ref Expression
Assertion pjop ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( 𝐴 ( ( proj𝐻 ) ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 axpjpj ( ( 𝐻C𝐴 ∈ ℋ ) → 𝐴 = ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) )
2 1 eqcomd ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 𝐴 )
3 simpr ( ( 𝐻C𝐴 ∈ ℋ ) → 𝐴 ∈ ℋ )
4 pjhcl ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ )
5 choccl ( 𝐻C → ( ⊥ ‘ 𝐻 ) ∈ C )
6 pjhcl ( ( ( ⊥ ‘ 𝐻 ) ∈ C𝐴 ∈ ℋ ) → ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ )
7 5 6 sylan ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ )
8 hvsubadd ( ( 𝐴 ∈ ℋ ∧ ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ ∧ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ ) → ( ( 𝐴 ( ( proj𝐻 ) ‘ 𝐴 ) ) = ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ↔ ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 𝐴 ) )
9 3 4 7 8 syl3anc ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( 𝐴 ( ( proj𝐻 ) ‘ 𝐴 ) ) = ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ↔ ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 𝐴 ) )
10 2 9 mpbird ( ( 𝐻C𝐴 ∈ ℋ ) → ( 𝐴 ( ( proj𝐻 ) ‘ 𝐴 ) ) = ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) )
11 10 eqcomd ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( 𝐴 ( ( proj𝐻 ) ‘ 𝐴 ) ) )