| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axpjpj | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  𝐴  =  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) | 
						
							| 2 | 1 | eqcomd | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  𝐴  ∈   ℋ ) | 
						
							| 4 |  | pjhcl | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ∈   ℋ ) | 
						
							| 5 |  | choccl | ⊢ ( 𝐻  ∈   Cℋ   →  ( ⊥ ‘ 𝐻 )  ∈   Cℋ  ) | 
						
							| 6 |  | pjhcl | ⊢ ( ( ( ⊥ ‘ 𝐻 )  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  ∈   ℋ ) | 
						
							| 7 | 5 6 | sylan | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  ∈   ℋ ) | 
						
							| 8 |  | hvsubadd | ⊢ ( ( 𝐴  ∈   ℋ  ∧  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ∈   ℋ  ∧  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  ∈   ℋ )  →  ( ( 𝐴  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  =  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  ↔  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) )  =  𝐴 ) ) | 
						
							| 9 | 3 4 7 8 | syl3anc | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ( ( 𝐴  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  =  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  ↔  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) )  =  𝐴 ) ) | 
						
							| 10 | 2 9 | mpbird | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ( 𝐴  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  =  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) | 
						
							| 11 | 10 | eqcomd | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  =  ( 𝐴  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |