Metamath Proof Explorer
		
		
		
		Description:  Orthocomplement projection in terms of projection.  (Contributed by NM, 31-Oct-1999)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | pjop.1 | ⊢ 𝐻  ∈   Cℋ | 
					
						|  |  | pjop.2 | ⊢ 𝐴  ∈   ℋ | 
				
					|  | Assertion | pjopi | ⊢  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  =  ( 𝐴  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjop.1 | ⊢ 𝐻  ∈   Cℋ | 
						
							| 2 |  | pjop.2 | ⊢ 𝐴  ∈   ℋ | 
						
							| 3 |  | pjop | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  =  ( 𝐴  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  =  ( 𝐴  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |