| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjoi0.1 |
⊢ 𝐺 ∈ Cℋ |
| 2 |
|
pjoi0.2 |
⊢ 𝐻 ∈ Cℋ |
| 3 |
|
pjoi0.3 |
⊢ 𝐴 ∈ ℋ |
| 4 |
1 2 3
|
pjoi0i |
⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 0 ) |
| 5 |
1 3
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℋ |
| 6 |
2 3
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 7 |
5 6
|
normpythi |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 0 → ( ( normℎ ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ) ) |
| 8 |
4 7
|
syl |
⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( normℎ ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ) ) |