Metamath Proof Explorer


Theorem pjorthi

Description: Projection components on orthocomplemented subspaces are orthogonal. (Contributed by NM, 26-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjorth.1 𝐴 ∈ ℋ
pjorth.2 𝐵 ∈ ℋ
Assertion pjorthi ( 𝐻C → ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) = 0 )

Proof

Step Hyp Ref Expression
1 pjorth.1 𝐴 ∈ ℋ
2 pjorth.2 𝐵 ∈ ℋ
3 chsh ( 𝐻C𝐻S )
4 axpjcl ( ( 𝐻C𝐴 ∈ ℋ ) → ( ( proj𝐻 ) ‘ 𝐴 ) ∈ 𝐻 )
5 1 4 mpan2 ( 𝐻C → ( ( proj𝐻 ) ‘ 𝐴 ) ∈ 𝐻 )
6 choccl ( 𝐻C → ( ⊥ ‘ 𝐻 ) ∈ C )
7 axpjcl ( ( ( ⊥ ‘ 𝐻 ) ∈ C𝐵 ∈ ℋ ) → ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ( ⊥ ‘ 𝐻 ) )
8 6 2 7 sylancl ( 𝐻C → ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ( ⊥ ‘ 𝐻 ) )
9 5 8 jca ( 𝐻C → ( ( ( proj𝐻 ) ‘ 𝐴 ) ∈ 𝐻 ∧ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ( ⊥ ‘ 𝐻 ) ) )
10 shocorth ( 𝐻S → ( ( ( ( proj𝐻 ) ‘ 𝐴 ) ∈ 𝐻 ∧ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) = 0 ) )
11 3 9 10 sylc ( 𝐻C → ( ( ( proj𝐻 ) ‘ 𝐴 ) ·ih ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) = 0 )