Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Properties of Hilbert subspaces
Projectors (cont.)
pjpj0i
Metamath Proof Explorer
Description: Decomposition of a vector into projections. (Contributed by NM , 26-Oct-1999) (Revised by Mario Carneiro , 15-May-2014)
(New usage is discouraged.)
Ref
Expression
Hypotheses
pjcli.1
⊢ 𝐻 ∈ C ℋ
pjcli.2
⊢ 𝐴 ∈ ℋ
Assertion
pjpj0i
⊢ 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) )
Proof
Step
Hyp
Ref
Expression
1
pjcli.1
⊢ 𝐻 ∈ C ℋ
2
pjcli.2
⊢ 𝐴 ∈ ℋ
3
axpjpj
⊢ ( ( 𝐻 ∈ C ℋ ∧ 𝐴 ∈ ℋ ) → 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) )
4
1 2 3
mp2an
⊢ 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) )