| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axpjcl | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ∈  𝐻 ) | 
						
							| 2 |  | choccl | ⊢ ( 𝐻  ∈   Cℋ   →  ( ⊥ ‘ 𝐻 )  ∈   Cℋ  ) | 
						
							| 3 |  | axpjcl | ⊢ ( ( ( ⊥ ‘ 𝐻 )  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  ∈  ( ⊥ ‘ 𝐻 ) ) | 
						
							| 4 | 2 3 | sylan | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  ∈  ( ⊥ ‘ 𝐻 ) ) | 
						
							| 5 |  | axpjpj | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  𝐴  =  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) | 
						
							| 6 |  | rspceov | ⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ∈  𝐻  ∧  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  ∈  ( ⊥ ‘ 𝐻 )  ∧  𝐴  =  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) )  →  ∃ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) | 
						
							| 7 | 1 4 5 6 | syl3anc | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ∃ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) |