Step |
Hyp |
Ref |
Expression |
1 |
|
pjpjpre.1 |
⊢ ( 𝜑 → 𝐻 ∈ Cℋ ) |
2 |
|
pjpjpre.2 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) |
3 |
|
chsh |
⊢ ( 𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ Sℋ ) |
5 |
|
shocsh |
⊢ ( 𝐻 ∈ Sℋ → ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) |
7 |
|
shsel |
⊢ ( ( 𝐻 ∈ Sℋ ∧ ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) → ( 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ↔ ∃ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
8 |
4 6 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ↔ ∃ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
9 |
2 8
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) |
10 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) |
11 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝑥 ∈ 𝐻 ) |
12 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) |
13 |
|
rspe |
⊢ ( ( 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) → ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) |
14 |
12 10 13
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) |
15 |
|
pjpreeq |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝑥 ↔ ( 𝑥 ∈ 𝐻 ∧ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) ) |
16 |
1 2 15
|
syl2anc |
⊢ ( 𝜑 → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝑥 ↔ ( 𝑥 ∈ 𝐻 ∧ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝑥 ↔ ( 𝑥 ∈ 𝐻 ∧ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) ) |
18 |
11 14 17
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝑥 ) |
19 |
|
shococss |
⊢ ( 𝐻 ∈ Sℋ → 𝐻 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) |
20 |
4 19
|
syl |
⊢ ( 𝜑 → 𝐻 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝐻 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) |
22 |
21 11
|
sseldd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) |
23 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝐻 ∈ Cℋ ) |
24 |
23 3
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝐻 ∈ Sℋ ) |
25 |
|
shel |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝑥 ∈ 𝐻 ) → 𝑥 ∈ ℋ ) |
26 |
24 11 25
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝑥 ∈ ℋ ) |
27 |
24 5
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) |
28 |
|
shel |
⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Sℋ ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝑦 ∈ ℋ ) |
29 |
27 12 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝑦 ∈ ℋ ) |
30 |
|
ax-hvcom |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 +ℎ 𝑦 ) = ( 𝑦 +ℎ 𝑥 ) ) |
31 |
26 29 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → ( 𝑥 +ℎ 𝑦 ) = ( 𝑦 +ℎ 𝑥 ) ) |
32 |
10 31
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) |
33 |
|
rspe |
⊢ ( ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) → ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) |
34 |
22 32 33
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) |
35 |
|
choccl |
⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ 𝐻 ) ∈ Cℋ ) |
36 |
1 35
|
syl |
⊢ ( 𝜑 → ( ⊥ ‘ 𝐻 ) ∈ Cℋ ) |
37 |
|
shocsh |
⊢ ( ( ⊥ ‘ 𝐻 ) ∈ Sℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ∈ Sℋ ) |
38 |
6 37
|
syl |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ∈ Sℋ ) |
39 |
|
shless |
⊢ ( ( ( 𝐻 ∈ Sℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ∈ Sℋ ∧ ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) ∧ 𝐻 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) → ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ⊆ ( ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) +ℋ ( ⊥ ‘ 𝐻 ) ) ) |
40 |
4 38 6 20 39
|
syl31anc |
⊢ ( 𝜑 → ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ⊆ ( ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) +ℋ ( ⊥ ‘ 𝐻 ) ) ) |
41 |
|
shscom |
⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Sℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ∈ Sℋ ) → ( ( ⊥ ‘ 𝐻 ) +ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) +ℋ ( ⊥ ‘ 𝐻 ) ) ) |
42 |
6 38 41
|
syl2anc |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝐻 ) +ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) +ℋ ( ⊥ ‘ 𝐻 ) ) ) |
43 |
40 42
|
sseqtrrd |
⊢ ( 𝜑 → ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ⊆ ( ( ⊥ ‘ 𝐻 ) +ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) ) |
44 |
43 2
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ( ( ⊥ ‘ 𝐻 ) +ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) ) |
45 |
|
pjpreeq |
⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Cℋ ∧ 𝐴 ∈ ( ( ⊥ ‘ 𝐻 ) +ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 𝑦 ↔ ( 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∧ ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) ) |
46 |
36 44 45
|
syl2anc |
⊢ ( 𝜑 → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 𝑦 ↔ ( 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∧ ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) ) |
47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 𝑦 ↔ ( 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∧ ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) ) |
48 |
12 34 47
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 𝑦 ) |
49 |
18 48
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( 𝑥 +ℎ 𝑦 ) ) |
50 |
10 49
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
51 |
50
|
exp32 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐴 = ( 𝑥 +ℎ 𝑦 ) → 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ) ) |
52 |
51
|
rexlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) → 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ) |
53 |
9 52
|
mpd |
⊢ ( 𝜑 → 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |