Metamath Proof Explorer
Description: Projection in terms of orthocomplement projection. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
pjop.1 |
⊢ 𝐻 ∈ Cℋ |
|
|
pjop.2 |
⊢ 𝐴 ∈ ℋ |
|
Assertion |
pjpoi |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
pjop.1 |
⊢ 𝐻 ∈ Cℋ |
2 |
|
pjop.2 |
⊢ 𝐴 ∈ ℋ |
3 |
|
pjpo |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) |