| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chsh | ⊢ ( 𝐻  ∈   Cℋ   →  𝐻  ∈   Sℋ  ) | 
						
							| 2 |  | shocsh | ⊢ ( 𝐻  ∈   Sℋ   →  ( ⊥ ‘ 𝐻 )  ∈   Sℋ  ) | 
						
							| 3 |  | shsel | ⊢ ( ( 𝐻  ∈   Sℋ   ∧  ( ⊥ ‘ 𝐻 )  ∈   Sℋ  )  →  ( 𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) )  ↔  ∃ 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) ) | 
						
							| 4 | 1 2 3 | syl2anc2 | ⊢ ( 𝐻  ∈   Cℋ   →  ( 𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) )  ↔  ∃ 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) ) | 
						
							| 5 | 4 | biimpa | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) ) )  →  ∃ 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) | 
						
							| 6 | 1 2 | syl | ⊢ ( 𝐻  ∈   Cℋ   →  ( ⊥ ‘ 𝐻 )  ∈   Sℋ  ) | 
						
							| 7 |  | ocin | ⊢ ( 𝐻  ∈   Sℋ   →  ( 𝐻  ∩  ( ⊥ ‘ 𝐻 ) )  =  0ℋ ) | 
						
							| 8 | 1 7 | syl | ⊢ ( 𝐻  ∈   Cℋ   →  ( 𝐻  ∩  ( ⊥ ‘ 𝐻 ) )  =  0ℋ ) | 
						
							| 9 |  | pjhthmo | ⊢ ( ( 𝐻  ∈   Sℋ   ∧  ( ⊥ ‘ 𝐻 )  ∈   Sℋ   ∧  ( 𝐻  ∩  ( ⊥ ‘ 𝐻 ) )  =  0ℋ )  →  ∃* 𝑦 ( 𝑦  ∈  𝐻  ∧  ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) ) | 
						
							| 10 | 1 6 8 9 | syl3anc | ⊢ ( 𝐻  ∈   Cℋ   →  ∃* 𝑦 ( 𝑦  ∈  𝐻  ∧  ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) ) )  →  ∃* 𝑦 ( 𝑦  ∈  𝐻  ∧  ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) ) | 
						
							| 12 |  | reu5 | ⊢ ( ∃! 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 )  ↔  ( ∃ 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 )  ∧  ∃* 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) ) | 
						
							| 13 |  | df-rmo | ⊢ ( ∃* 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 )  ↔  ∃* 𝑦 ( 𝑦  ∈  𝐻  ∧  ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) ) | 
						
							| 14 | 13 | anbi2i | ⊢ ( ( ∃ 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 )  ∧  ∃* 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) )  ↔  ( ∃ 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 )  ∧  ∃* 𝑦 ( 𝑦  ∈  𝐻  ∧  ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) ) ) | 
						
							| 15 | 12 14 | bitri | ⊢ ( ∃! 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 )  ↔  ( ∃ 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 )  ∧  ∃* 𝑦 ( 𝑦  ∈  𝐻  ∧  ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) ) ) | 
						
							| 16 | 5 11 15 | sylanbrc | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) ) )  →  ∃! 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) | 
						
							| 17 |  | riotacl | ⊢ ( ∃! 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 )  →  ( ℩ 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) )  ∈  𝐻 ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) ) )  →  ( ℩ 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) )  ∈  𝐻 ) | 
						
							| 19 |  | eleq1 | ⊢ ( ( ℩ 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) )  =  𝐵  →  ( ( ℩ 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) )  ∈  𝐻  ↔  𝐵  ∈  𝐻 ) ) | 
						
							| 20 | 18 19 | syl5ibcom | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) ) )  →  ( ( ℩ 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) )  =  𝐵  →  𝐵  ∈  𝐻 ) ) | 
						
							| 21 | 20 | pm4.71rd | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) ) )  →  ( ( ℩ 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) )  =  𝐵  ↔  ( 𝐵  ∈  𝐻  ∧  ( ℩ 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) )  =  𝐵 ) ) ) | 
						
							| 22 |  | shsss | ⊢ ( ( 𝐻  ∈   Sℋ   ∧  ( ⊥ ‘ 𝐻 )  ∈   Sℋ  )  →  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) )  ⊆   ℋ ) | 
						
							| 23 | 1 2 22 | syl2anc2 | ⊢ ( 𝐻  ∈   Cℋ   →  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) )  ⊆   ℋ ) | 
						
							| 24 | 23 | sselda | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) ) )  →  𝐴  ∈   ℋ ) | 
						
							| 25 |  | pjhval | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  =  ( ℩ 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) ) | 
						
							| 26 | 24 25 | syldan | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) ) )  →  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  =  ( ℩ 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) ) | 
						
							| 27 | 26 | eqeq1d | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) ) )  →  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  =  𝐵  ↔  ( ℩ 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) )  =  𝐵 ) ) | 
						
							| 28 |  | id | ⊢ ( 𝐵  ∈  𝐻  →  𝐵  ∈  𝐻 ) | 
						
							| 29 |  | oveq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  +ℎ  𝑥 )  =  ( 𝐵  +ℎ  𝑥 ) ) | 
						
							| 30 | 29 | eqeq2d | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  =  ( 𝑦  +ℎ  𝑥 )  ↔  𝐴  =  ( 𝐵  +ℎ  𝑥 ) ) ) | 
						
							| 31 | 30 | rexbidv | ⊢ ( 𝑦  =  𝐵  →  ( ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 )  ↔  ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝐵  +ℎ  𝑥 ) ) ) | 
						
							| 32 | 31 | riota2 | ⊢ ( ( 𝐵  ∈  𝐻  ∧  ∃! 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) )  →  ( ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝐵  +ℎ  𝑥 )  ↔  ( ℩ 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) )  =  𝐵 ) ) | 
						
							| 33 | 28 16 32 | syl2anr | ⊢ ( ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) ) )  ∧  𝐵  ∈  𝐻 )  →  ( ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝐵  +ℎ  𝑥 )  ↔  ( ℩ 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) )  =  𝐵 ) ) | 
						
							| 34 | 33 | pm5.32da | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) ) )  →  ( ( 𝐵  ∈  𝐻  ∧  ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝐵  +ℎ  𝑥 ) )  ↔  ( 𝐵  ∈  𝐻  ∧  ( ℩ 𝑦  ∈  𝐻 ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) )  =  𝐵 ) ) ) | 
						
							| 35 | 21 27 34 | 3bitr4d | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) ) )  →  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  =  𝐵  ↔  ( 𝐵  ∈  𝐻  ∧  ∃ 𝑥  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝐵  +ℎ  𝑥 ) ) ) ) |