Step |
Hyp |
Ref |
Expression |
1 |
|
chsh |
⊢ ( 𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
2 |
|
shocsh |
⊢ ( 𝐻 ∈ Sℋ → ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) |
3 |
|
shsel |
⊢ ( ( 𝐻 ∈ Sℋ ∧ ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) → ( 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ↔ ∃ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) |
4 |
1 2 3
|
syl2anc2 |
⊢ ( 𝐻 ∈ Cℋ → ( 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ↔ ∃ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) |
5 |
4
|
biimpa |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ∃ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) |
6 |
1 2
|
syl |
⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) |
7 |
|
ocin |
⊢ ( 𝐻 ∈ Sℋ → ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0ℋ ) |
8 |
1 7
|
syl |
⊢ ( 𝐻 ∈ Cℋ → ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0ℋ ) |
9 |
|
pjhthmo |
⊢ ( ( 𝐻 ∈ Sℋ ∧ ( ⊥ ‘ 𝐻 ) ∈ Sℋ ∧ ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0ℋ ) → ∃* 𝑦 ( 𝑦 ∈ 𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) |
10 |
1 6 8 9
|
syl3anc |
⊢ ( 𝐻 ∈ Cℋ → ∃* 𝑦 ( 𝑦 ∈ 𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ∃* 𝑦 ( 𝑦 ∈ 𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) |
12 |
|
reu5 |
⊢ ( ∃! 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ ( ∃ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ∧ ∃* 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) |
13 |
|
df-rmo |
⊢ ( ∃* 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) |
14 |
13
|
anbi2i |
⊢ ( ( ∃ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ∧ ∃* 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ↔ ( ∃ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ∧ ∃* 𝑦 ( 𝑦 ∈ 𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) ) |
15 |
12 14
|
bitri |
⊢ ( ∃! 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ ( ∃ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ∧ ∃* 𝑦 ( 𝑦 ∈ 𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) ) |
16 |
5 11 15
|
sylanbrc |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ∃! 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) |
17 |
|
riotacl |
⊢ ( ∃! 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) → ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ∈ 𝐻 ) |
18 |
16 17
|
syl |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ∈ 𝐻 ) |
19 |
|
eleq1 |
⊢ ( ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) = 𝐵 → ( ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ∈ 𝐻 ↔ 𝐵 ∈ 𝐻 ) ) |
20 |
18 19
|
syl5ibcom |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) = 𝐵 → 𝐵 ∈ 𝐻 ) ) |
21 |
20
|
pm4.71rd |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) = 𝐵 ↔ ( 𝐵 ∈ 𝐻 ∧ ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) = 𝐵 ) ) ) |
22 |
|
shsss |
⊢ ( ( 𝐻 ∈ Sℋ ∧ ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) → ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ⊆ ℋ ) |
23 |
1 2 22
|
syl2anc2 |
⊢ ( 𝐻 ∈ Cℋ → ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ⊆ ℋ ) |
24 |
23
|
sselda |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → 𝐴 ∈ ℋ ) |
25 |
|
pjhval |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) |
26 |
24 25
|
syldan |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) |
27 |
26
|
eqeq1d |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐵 ↔ ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) = 𝐵 ) ) |
28 |
|
id |
⊢ ( 𝐵 ∈ 𝐻 → 𝐵 ∈ 𝐻 ) |
29 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 +ℎ 𝑥 ) = ( 𝐵 +ℎ 𝑥 ) ) |
30 |
29
|
eqeq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ 𝐴 = ( 𝐵 +ℎ 𝑥 ) ) ) |
31 |
30
|
rexbidv |
⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ↔ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝐵 +ℎ 𝑥 ) ) ) |
32 |
31
|
riota2 |
⊢ ( ( 𝐵 ∈ 𝐻 ∧ ∃! 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) → ( ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝐵 +ℎ 𝑥 ) ↔ ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) = 𝐵 ) ) |
33 |
28 16 32
|
syl2anr |
⊢ ( ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) ∧ 𝐵 ∈ 𝐻 ) → ( ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝐵 +ℎ 𝑥 ) ↔ ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) = 𝐵 ) ) |
34 |
33
|
pm5.32da |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ( ( 𝐵 ∈ 𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝐵 +ℎ 𝑥 ) ) ↔ ( 𝐵 ∈ 𝐻 ∧ ( ℩ 𝑦 ∈ 𝐻 ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) = 𝐵 ) ) ) |
35 |
21 27 34
|
3bitr4d |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐵 ↔ ( 𝐵 ∈ 𝐻 ∧ ∃ 𝑥 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝐵 +ℎ 𝑥 ) ) ) ) |