Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( projℎ ‘ 𝐻 ) = ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) |
2 |
1
|
fveq1d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) |
3 |
2
|
fveq2d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) ) |
4 |
3
|
oveq1d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) = ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) ↑ 2 ) ) |
5 |
|
2fveq3 |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) = ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ) |
6 |
5
|
fveq1d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) ) |
7 |
6
|
fveq2d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) ) ) |
8 |
7
|
oveq1d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) = ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) ) ↑ 2 ) ) |
9 |
4 8
|
oveq12d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) = ( ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) ) ↑ 2 ) ) ) |
10 |
9
|
eqeq2d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) ↔ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) ) ↑ 2 ) ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( normℎ ‘ 𝐴 ) = ( normℎ ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( normℎ ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↑ 2 ) ) |
13 |
|
2fveq3 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) = ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
14 |
13
|
oveq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) ↑ 2 ) = ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) ) |
15 |
|
2fveq3 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) ) = ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
16 |
15
|
oveq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) ) ↑ 2 ) = ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) ) |
17 |
14 16
|
oveq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) ) ↑ 2 ) ) = ( ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) ) ) |
18 |
12 17
|
eqeq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) ) ↑ 2 ) ) ↔ ( ( normℎ ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) ) ) ) |
19 |
|
ifchhv |
⊢ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ∈ Cℋ |
20 |
|
ifhvhv0 |
⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ |
21 |
19 20
|
pjpythi |
⊢ ( ( normℎ ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) ) |
22 |
10 18 21
|
dedth2h |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) ) |