| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( projℎ ‘ 𝐻 ) = ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) |
| 2 |
1
|
fveq1d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) |
| 3 |
2
|
fveq2d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) ) |
| 4 |
3
|
oveq1d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) = ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) ↑ 2 ) ) |
| 5 |
|
2fveq3 |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) = ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ) |
| 6 |
5
|
fveq1d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) ) |
| 7 |
6
|
fveq2d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) ) ) |
| 8 |
7
|
oveq1d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) = ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) ) ↑ 2 ) ) |
| 9 |
4 8
|
oveq12d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) = ( ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) ) ↑ 2 ) ) ) |
| 10 |
9
|
eqeq2d |
⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) ↔ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) ) ↑ 2 ) ) ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( normℎ ‘ 𝐴 ) = ( normℎ ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
| 12 |
11
|
oveq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( normℎ ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↑ 2 ) ) |
| 13 |
|
2fveq3 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) = ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 14 |
13
|
oveq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) ↑ 2 ) = ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) ) |
| 15 |
|
2fveq3 |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) ) = ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 16 |
15
|
oveq1d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) ) ↑ 2 ) = ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) ) |
| 17 |
14 16
|
oveq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) ) ↑ 2 ) ) = ( ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) ) ) |
| 18 |
12 17
|
eqeq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ 𝐴 ) ) ↑ 2 ) ) ↔ ( ( normℎ ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) ) ) ) |
| 19 |
|
ifchhv |
⊢ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ∈ Cℋ |
| 20 |
|
ifhvhv0 |
⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ |
| 21 |
19 20
|
pjpythi |
⊢ ( ( normℎ ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↑ 2 ) ) |
| 22 |
10 18 21
|
dedth2h |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) ) |