Metamath Proof Explorer


Theorem pjpythi

Description: Pythagorean theorem for projections. (Contributed by NM, 27-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjnorm.1 𝐻C
pjnorm.2 𝐴 ∈ ℋ
Assertion pjpythi ( ( norm𝐴 ) ↑ 2 ) = ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) )

Proof

Step Hyp Ref Expression
1 pjnorm.1 𝐻C
2 pjnorm.2 𝐴 ∈ ℋ
3 1 2 pjpji 𝐴 = ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) )
4 3 fveq2i ( norm𝐴 ) = ( norm ‘ ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) )
5 4 oveq1i ( ( norm𝐴 ) ↑ 2 ) = ( ( norm ‘ ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ↑ 2 )
6 1 chshii 𝐻S
7 shococss ( 𝐻S𝐻 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) )
8 1 choccli ( ⊥ ‘ 𝐻 ) ∈ C
9 1 8 2 pjopythi ( 𝐻 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) → ( ( norm ‘ ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) )
10 6 7 9 mp2b ( ( norm ‘ ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) )
11 5 10 eqtri ( ( norm𝐴 ) ↑ 2 ) = ( ( ( norm ‘ ( ( proj𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( ( proj ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) )