Step |
Hyp |
Ref |
Expression |
1 |
|
pjnorm.1 |
⊢ 𝐻 ∈ Cℋ |
2 |
|
pjnorm.2 |
⊢ 𝐴 ∈ ℋ |
3 |
1 2
|
pjpji |
⊢ 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) |
4 |
3
|
fveq2i |
⊢ ( normℎ ‘ 𝐴 ) = ( normℎ ‘ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
5 |
4
|
oveq1i |
⊢ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( normℎ ‘ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ↑ 2 ) |
6 |
1
|
chshii |
⊢ 𝐻 ∈ Sℋ |
7 |
|
shococss |
⊢ ( 𝐻 ∈ Sℋ → 𝐻 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) |
8 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
9 |
1 8 2
|
pjopythi |
⊢ ( 𝐻 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) → ( ( normℎ ‘ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) ) |
10 |
6 7 9
|
mp2b |
⊢ ( ( normℎ ‘ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) |
11 |
5 10
|
eqtri |
⊢ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ↑ 2 ) ) |