Metamath Proof Explorer


Theorem pjrni

Description: The range of a projection. Part of Theorem 26.2 of Halmos p. 44. (Contributed by NM, 30-Oct-1999) (Revised by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)

Ref Expression
Hypothesis pjfn.1 𝐻C
Assertion pjrni ran ( proj𝐻 ) = 𝐻

Proof

Step Hyp Ref Expression
1 pjfn.1 𝐻C
2 1 pjfni ( proj𝐻 ) Fn ℋ
3 1 pjcli ( 𝑥 ∈ ℋ → ( ( proj𝐻 ) ‘ 𝑥 ) ∈ 𝐻 )
4 3 rgen 𝑥 ∈ ℋ ( ( proj𝐻 ) ‘ 𝑥 ) ∈ 𝐻
5 ffnfv ( ( proj𝐻 ) : ℋ ⟶ 𝐻 ↔ ( ( proj𝐻 ) Fn ℋ ∧ ∀ 𝑥 ∈ ℋ ( ( proj𝐻 ) ‘ 𝑥 ) ∈ 𝐻 ) )
6 2 4 5 mpbir2an ( proj𝐻 ) : ℋ ⟶ 𝐻
7 frn ( ( proj𝐻 ) : ℋ ⟶ 𝐻 → ran ( proj𝐻 ) ⊆ 𝐻 )
8 6 7 ax-mp ran ( proj𝐻 ) ⊆ 𝐻
9 pjid ( ( 𝐻C𝑦𝐻 ) → ( ( proj𝐻 ) ‘ 𝑦 ) = 𝑦 )
10 1 9 mpan ( 𝑦𝐻 → ( ( proj𝐻 ) ‘ 𝑦 ) = 𝑦 )
11 1 cheli ( 𝑦𝐻𝑦 ∈ ℋ )
12 fnfvelrn ( ( ( proj𝐻 ) Fn ℋ ∧ 𝑦 ∈ ℋ ) → ( ( proj𝐻 ) ‘ 𝑦 ) ∈ ran ( proj𝐻 ) )
13 2 11 12 sylancr ( 𝑦𝐻 → ( ( proj𝐻 ) ‘ 𝑦 ) ∈ ran ( proj𝐻 ) )
14 10 13 eqeltrrd ( 𝑦𝐻𝑦 ∈ ran ( proj𝐻 ) )
15 14 ssriv 𝐻 ⊆ ran ( proj𝐻 )
16 8 15 eqssi ran ( proj𝐻 ) = 𝐻