| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjfn.1 | ⊢ 𝐻  ∈   Cℋ | 
						
							| 2 | 1 | pjfni | ⊢ ( projℎ ‘ 𝐻 )  Fn   ℋ | 
						
							| 3 | 1 | pjcli | ⊢ ( 𝑥  ∈   ℋ  →  ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 )  ∈  𝐻 ) | 
						
							| 4 | 3 | rgen | ⊢ ∀ 𝑥  ∈   ℋ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 )  ∈  𝐻 | 
						
							| 5 |  | ffnfv | ⊢ ( ( projℎ ‘ 𝐻 ) :  ℋ ⟶ 𝐻  ↔  ( ( projℎ ‘ 𝐻 )  Fn   ℋ  ∧  ∀ 𝑥  ∈   ℋ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 )  ∈  𝐻 ) ) | 
						
							| 6 | 2 4 5 | mpbir2an | ⊢ ( projℎ ‘ 𝐻 ) :  ℋ ⟶ 𝐻 | 
						
							| 7 |  | frn | ⊢ ( ( projℎ ‘ 𝐻 ) :  ℋ ⟶ 𝐻  →  ran  ( projℎ ‘ 𝐻 )  ⊆  𝐻 ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ ran  ( projℎ ‘ 𝐻 )  ⊆  𝐻 | 
						
							| 9 |  | pjid | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝑦  ∈  𝐻 )  →  ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 )  =  𝑦 ) | 
						
							| 10 | 1 9 | mpan | ⊢ ( 𝑦  ∈  𝐻  →  ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 )  =  𝑦 ) | 
						
							| 11 | 1 | cheli | ⊢ ( 𝑦  ∈  𝐻  →  𝑦  ∈   ℋ ) | 
						
							| 12 |  | fnfvelrn | ⊢ ( ( ( projℎ ‘ 𝐻 )  Fn   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 )  ∈  ran  ( projℎ ‘ 𝐻 ) ) | 
						
							| 13 | 2 11 12 | sylancr | ⊢ ( 𝑦  ∈  𝐻  →  ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 )  ∈  ran  ( projℎ ‘ 𝐻 ) ) | 
						
							| 14 | 10 13 | eqeltrrd | ⊢ ( 𝑦  ∈  𝐻  →  𝑦  ∈  ran  ( projℎ ‘ 𝐻 ) ) | 
						
							| 15 | 14 | ssriv | ⊢ 𝐻  ⊆  ran  ( projℎ ‘ 𝐻 ) | 
						
							| 16 | 8 15 | eqssi | ⊢ ran  ( projℎ ‘ 𝐻 )  =  𝐻 |