Step |
Hyp |
Ref |
Expression |
1 |
|
pjfn.1 |
⊢ 𝐻 ∈ Cℋ |
2 |
1
|
pjfni |
⊢ ( projℎ ‘ 𝐻 ) Fn ℋ |
3 |
1
|
pjcli |
⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐻 ) |
4 |
3
|
rgen |
⊢ ∀ 𝑥 ∈ ℋ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐻 |
5 |
|
ffnfv |
⊢ ( ( projℎ ‘ 𝐻 ) : ℋ ⟶ 𝐻 ↔ ( ( projℎ ‘ 𝐻 ) Fn ℋ ∧ ∀ 𝑥 ∈ ℋ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐻 ) ) |
6 |
2 4 5
|
mpbir2an |
⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ 𝐻 |
7 |
|
frn |
⊢ ( ( projℎ ‘ 𝐻 ) : ℋ ⟶ 𝐻 → ran ( projℎ ‘ 𝐻 ) ⊆ 𝐻 ) |
8 |
6 7
|
ax-mp |
⊢ ran ( projℎ ‘ 𝐻 ) ⊆ 𝐻 |
9 |
|
pjid |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝑦 ∈ 𝐻 ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) = 𝑦 ) |
10 |
1 9
|
mpan |
⊢ ( 𝑦 ∈ 𝐻 → ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) = 𝑦 ) |
11 |
1
|
cheli |
⊢ ( 𝑦 ∈ 𝐻 → 𝑦 ∈ ℋ ) |
12 |
|
fnfvelrn |
⊢ ( ( ( projℎ ‘ 𝐻 ) Fn ℋ ∧ 𝑦 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ∈ ran ( projℎ ‘ 𝐻 ) ) |
13 |
2 11 12
|
sylancr |
⊢ ( 𝑦 ∈ 𝐻 → ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ∈ ran ( projℎ ‘ 𝐻 ) ) |
14 |
10 13
|
eqeltrrd |
⊢ ( 𝑦 ∈ 𝐻 → 𝑦 ∈ ran ( projℎ ‘ 𝐻 ) ) |
15 |
14
|
ssriv |
⊢ 𝐻 ⊆ ran ( projℎ ‘ 𝐻 ) |
16 |
8 15
|
eqssi |
⊢ ran ( projℎ ‘ 𝐻 ) = 𝐻 |