Step |
Hyp |
Ref |
Expression |
1 |
|
pjidm.1 |
⊢ 𝐻 ∈ Cℋ |
2 |
|
pjidm.2 |
⊢ 𝐴 ∈ ℋ |
3 |
|
pjsslem.1 |
⊢ 𝐺 ∈ Cℋ |
4 |
|
pjo |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
5 |
1 2 4
|
mp2an |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
6 |
|
pjo |
⊢ ( ( 𝐺 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
7 |
3 2 6
|
mp2an |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) |
8 |
5 7
|
oveq12i |
⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) = ( ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) −ℎ ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
9 |
|
helch |
⊢ ℋ ∈ Cℋ |
10 |
9 2
|
pjclii |
⊢ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ∈ ℋ |
11 |
1 2
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
12 |
3 2
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℋ |
13 |
10 11 10 12
|
hvsubsub4i |
⊢ ( ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) −ℎ ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) = ( ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) −ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
14 |
|
hvsubid |
⊢ ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ∈ ℋ → ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) = 0ℎ ) |
15 |
10 14
|
ax-mp |
⊢ ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) = 0ℎ |
16 |
15
|
oveq1i |
⊢ ( ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) −ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) = ( 0ℎ −ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
17 |
8 13 16
|
3eqtri |
⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) = ( 0ℎ −ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
18 |
11 12
|
hvsubcli |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ∈ ℋ |
19 |
18
|
hv2negi |
⊢ ( 0ℎ −ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) = ( - 1 ·ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
20 |
11 12
|
hvnegdii |
⊢ ( - 1 ·ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
21 |
17 19 20
|
3eqtri |
⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |