| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjidm.1 |
⊢ 𝐻 ∈ Cℋ |
| 2 |
|
pjidm.2 |
⊢ 𝐴 ∈ ℋ |
| 3 |
|
pjsslem.1 |
⊢ 𝐺 ∈ Cℋ |
| 4 |
3 2
|
pjclii |
⊢ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝐺 |
| 5 |
1 2
|
pjclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 |
| 6 |
|
ssel |
⊢ ( 𝐻 ⊆ 𝐺 → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐺 ) ) |
| 7 |
5 6
|
mpi |
⊢ ( 𝐻 ⊆ 𝐺 → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐺 ) |
| 8 |
3
|
chshii |
⊢ 𝐺 ∈ Sℋ |
| 9 |
|
shsubcl |
⊢ ( ( 𝐺 ∈ Sℋ ∧ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝐺 ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐺 ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐺 ) |
| 10 |
8 9
|
mp3an1 |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝐺 ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐺 ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐺 ) |
| 11 |
4 7 10
|
sylancr |
⊢ ( 𝐻 ⊆ 𝐺 → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐺 ) |
| 12 |
1 2 3
|
pjsslem |
⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
| 13 |
1 3
|
chsscon3i |
⊢ ( 𝐻 ⊆ 𝐺 ↔ ( ⊥ ‘ 𝐺 ) ⊆ ( ⊥ ‘ 𝐻 ) ) |
| 14 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
| 15 |
14 2
|
pjclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) |
| 16 |
3
|
choccli |
⊢ ( ⊥ ‘ 𝐺 ) ∈ Cℋ |
| 17 |
16 2
|
pjclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐺 ) |
| 18 |
|
ssel |
⊢ ( ( ⊥ ‘ 𝐺 ) ⊆ ( ⊥ ‘ 𝐻 ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐺 ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ) ) |
| 19 |
17 18
|
mpi |
⊢ ( ( ⊥ ‘ 𝐺 ) ⊆ ( ⊥ ‘ 𝐻 ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 20 |
14
|
chshii |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Sℋ |
| 21 |
|
shsubcl |
⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Sℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 22 |
20 21
|
mp3an1 |
⊢ ( ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 23 |
15 19 22
|
sylancr |
⊢ ( ( ⊥ ‘ 𝐺 ) ⊆ ( ⊥ ‘ 𝐻 ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 24 |
13 23
|
sylbi |
⊢ ( 𝐻 ⊆ 𝐺 → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 25 |
12 24
|
eqeltrrid |
⊢ ( 𝐻 ⊆ 𝐺 → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 26 |
11 25
|
jca |
⊢ ( 𝐻 ⊆ 𝐺 → ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐺 ∧ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) ) |
| 27 |
|
elin |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ↔ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐺 ∧ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) ) |
| 28 |
3 14
|
chincli |
⊢ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ∈ Cℋ |
| 29 |
3 2
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℋ |
| 30 |
1 2
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 31 |
29 30
|
hvsubcli |
⊢ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ℋ |
| 32 |
28 31
|
pjchi |
⊢ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ↔ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 33 |
27 32
|
bitr3i |
⊢ ( ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ 𝐺 ∧ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) ↔ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 34 |
26 33
|
sylib |
⊢ ( 𝐻 ⊆ 𝐺 → ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 35 |
28 29 30
|
pjsubii |
⊢ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) −ℎ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 36 |
28 29
|
pjhclii |
⊢ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ∈ ℋ |
| 37 |
28 30
|
pjhclii |
⊢ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ℋ |
| 38 |
36 37
|
hvsubvali |
⊢ ( ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) −ℎ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) +ℎ ( - 1 ·ℎ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) |
| 39 |
|
inss1 |
⊢ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ⊆ 𝐺 |
| 40 |
28 2 3
|
pjss2i |
⊢ ( ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ⊆ 𝐺 → ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) |
| 41 |
39 40
|
ax-mp |
⊢ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) |
| 42 |
1
|
chshii |
⊢ 𝐻 ∈ Sℋ |
| 43 |
|
shococss |
⊢ ( 𝐻 ∈ Sℋ → 𝐻 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) |
| 44 |
42 43
|
ax-mp |
⊢ 𝐻 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) |
| 45 |
|
inss2 |
⊢ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ⊆ ( ⊥ ‘ 𝐻 ) |
| 46 |
28 14
|
chsscon3i |
⊢ ( ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ⊆ ( ⊥ ‘ 𝐻 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ⊆ ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ) |
| 47 |
45 46
|
mpbi |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ⊆ ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) |
| 48 |
44 47
|
sstri |
⊢ 𝐻 ⊆ ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) |
| 49 |
48 5
|
sselii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) |
| 50 |
28 30
|
pjoc2i |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ( ⊥ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ↔ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 0ℎ ) |
| 51 |
49 50
|
mpbi |
⊢ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 0ℎ |
| 52 |
51
|
oveq2i |
⊢ ( - 1 ·ℎ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( - 1 ·ℎ 0ℎ ) |
| 53 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 54 |
|
hvmul0 |
⊢ ( - 1 ∈ ℂ → ( - 1 ·ℎ 0ℎ ) = 0ℎ ) |
| 55 |
53 54
|
ax-mp |
⊢ ( - 1 ·ℎ 0ℎ ) = 0ℎ |
| 56 |
52 55
|
eqtri |
⊢ ( - 1 ·ℎ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = 0ℎ |
| 57 |
41 56
|
oveq12i |
⊢ ( ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) +ℎ ( - 1 ·ℎ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) = ( ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) +ℎ 0ℎ ) |
| 58 |
28 2
|
pjhclii |
⊢ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ∈ ℋ |
| 59 |
|
ax-hvaddid |
⊢ ( ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ∈ ℋ → ( ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) +ℎ 0ℎ ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) |
| 60 |
58 59
|
ax-mp |
⊢ ( ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) +ℎ 0ℎ ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) |
| 61 |
57 60
|
eqtri |
⊢ ( ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) +ℎ ( - 1 ·ℎ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) |
| 62 |
38 61
|
eqtri |
⊢ ( ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) −ℎ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) |
| 63 |
35 62
|
eqtri |
⊢ ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) |
| 64 |
34 63
|
eqtr3di |
⊢ ( 𝐻 ⊆ 𝐺 → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ( 𝐺 ∩ ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) |