| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjidm.1 | ⊢ 𝐻  ∈   Cℋ | 
						
							| 2 |  | pjidm.2 | ⊢ 𝐴  ∈   ℋ | 
						
							| 3 |  | pjsslem.1 | ⊢ 𝐺  ∈   Cℋ | 
						
							| 4 | 3 2 | pjclii | ⊢ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  ∈  𝐺 | 
						
							| 5 | 1 2 | pjclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ∈  𝐻 | 
						
							| 6 |  | ssel | ⊢ ( 𝐻  ⊆  𝐺  →  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ∈  𝐻  →  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ∈  𝐺 ) ) | 
						
							| 7 | 5 6 | mpi | ⊢ ( 𝐻  ⊆  𝐺  →  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ∈  𝐺 ) | 
						
							| 8 | 3 | chshii | ⊢ 𝐺  ∈   Sℋ | 
						
							| 9 |  | shsubcl | ⊢ ( ( 𝐺  ∈   Sℋ   ∧  ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  ∈  𝐺  ∧  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ∈  𝐺 )  →  ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  ∈  𝐺 ) | 
						
							| 10 | 8 9 | mp3an1 | ⊢ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  ∈  𝐺  ∧  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ∈  𝐺 )  →  ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  ∈  𝐺 ) | 
						
							| 11 | 4 7 10 | sylancr | ⊢ ( 𝐻  ⊆  𝐺  →  ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  ∈  𝐺 ) | 
						
							| 12 | 1 2 3 | pjsslem | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) )  =  ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) | 
						
							| 13 | 1 3 | chsscon3i | ⊢ ( 𝐻  ⊆  𝐺  ↔  ( ⊥ ‘ 𝐺 )  ⊆  ( ⊥ ‘ 𝐻 ) ) | 
						
							| 14 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐻 )  ∈   Cℋ | 
						
							| 15 | 14 2 | pjclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  ∈  ( ⊥ ‘ 𝐻 ) | 
						
							| 16 | 3 | choccli | ⊢ ( ⊥ ‘ 𝐺 )  ∈   Cℋ | 
						
							| 17 | 16 2 | pjclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 )  ∈  ( ⊥ ‘ 𝐺 ) | 
						
							| 18 |  | ssel | ⊢ ( ( ⊥ ‘ 𝐺 )  ⊆  ( ⊥ ‘ 𝐻 )  →  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 )  ∈  ( ⊥ ‘ 𝐺 )  →  ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 )  ∈  ( ⊥ ‘ 𝐻 ) ) ) | 
						
							| 19 | 17 18 | mpi | ⊢ ( ( ⊥ ‘ 𝐺 )  ⊆  ( ⊥ ‘ 𝐻 )  →  ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 )  ∈  ( ⊥ ‘ 𝐻 ) ) | 
						
							| 20 | 14 | chshii | ⊢ ( ⊥ ‘ 𝐻 )  ∈   Sℋ | 
						
							| 21 |  | shsubcl | ⊢ ( ( ( ⊥ ‘ 𝐻 )  ∈   Sℋ   ∧  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  ∈  ( ⊥ ‘ 𝐻 )  ∧  ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 )  ∈  ( ⊥ ‘ 𝐻 ) )  →  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) )  ∈  ( ⊥ ‘ 𝐻 ) ) | 
						
							| 22 | 20 21 | mp3an1 | ⊢ ( ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  ∈  ( ⊥ ‘ 𝐻 )  ∧  ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 )  ∈  ( ⊥ ‘ 𝐻 ) )  →  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) )  ∈  ( ⊥ ‘ 𝐻 ) ) | 
						
							| 23 | 15 19 22 | sylancr | ⊢ ( ( ⊥ ‘ 𝐺 )  ⊆  ( ⊥ ‘ 𝐻 )  →  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) )  ∈  ( ⊥ ‘ 𝐻 ) ) | 
						
							| 24 | 13 23 | sylbi | ⊢ ( 𝐻  ⊆  𝐺  →  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) )  ∈  ( ⊥ ‘ 𝐻 ) ) | 
						
							| 25 | 12 24 | eqeltrrid | ⊢ ( 𝐻  ⊆  𝐺  →  ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  ∈  ( ⊥ ‘ 𝐻 ) ) | 
						
							| 26 | 11 25 | jca | ⊢ ( 𝐻  ⊆  𝐺  →  ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  ∈  𝐺  ∧  ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  ∈  ( ⊥ ‘ 𝐻 ) ) ) | 
						
							| 27 |  | elin | ⊢ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  ∈  ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) )  ↔  ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  ∈  𝐺  ∧  ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  ∈  ( ⊥ ‘ 𝐻 ) ) ) | 
						
							| 28 | 3 14 | chincli | ⊢ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) )  ∈   Cℋ | 
						
							| 29 | 3 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  ∈   ℋ | 
						
							| 30 | 1 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ∈   ℋ | 
						
							| 31 | 29 30 | hvsubcli | ⊢ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  ∈   ℋ | 
						
							| 32 | 28 31 | pjchi | ⊢ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  ∈  ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) )  ↔  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) )  =  ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) | 
						
							| 33 | 27 32 | bitr3i | ⊢ ( ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  ∈  𝐺  ∧  ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  ∈  ( ⊥ ‘ 𝐻 ) )  ↔  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) )  =  ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) | 
						
							| 34 | 26 33 | sylib | ⊢ ( 𝐻  ⊆  𝐺  →  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) )  =  ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) | 
						
							| 35 | 28 29 30 | pjsubii | ⊢ ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) )  =  ( ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) )  −ℎ  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) | 
						
							| 36 | 28 29 | pjhclii | ⊢ ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) )  ∈   ℋ | 
						
							| 37 | 28 30 | pjhclii | ⊢ ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  ∈   ℋ | 
						
							| 38 | 36 37 | hvsubvali | ⊢ ( ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) )  −ℎ  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) )  =  ( ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) )  +ℎ  ( - 1  ·ℎ  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) | 
						
							| 39 |  | inss1 | ⊢ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) )  ⊆  𝐺 | 
						
							| 40 | 28 2 3 | pjss2i | ⊢ ( ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) )  ⊆  𝐺  →  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) )  =  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) | 
						
							| 41 | 39 40 | ax-mp | ⊢ ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) )  =  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) | 
						
							| 42 | 1 | chshii | ⊢ 𝐻  ∈   Sℋ | 
						
							| 43 |  | shococss | ⊢ ( 𝐻  ∈   Sℋ   →  𝐻  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) | 
						
							| 44 | 42 43 | ax-mp | ⊢ 𝐻  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) | 
						
							| 45 |  | inss2 | ⊢ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) )  ⊆  ( ⊥ ‘ 𝐻 ) | 
						
							| 46 | 28 14 | chsscon3i | ⊢ ( ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) )  ⊆  ( ⊥ ‘ 𝐻 )  ↔  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) )  ⊆  ( ⊥ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ) | 
						
							| 47 | 45 46 | mpbi | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) )  ⊆  ( ⊥ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) | 
						
							| 48 | 44 47 | sstri | ⊢ 𝐻  ⊆  ( ⊥ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) | 
						
							| 49 | 48 5 | sselii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ∈  ( ⊥ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) | 
						
							| 50 | 28 30 | pjoc2i | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  ∈  ( ⊥ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) )  ↔  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  =  0ℎ ) | 
						
							| 51 | 49 50 | mpbi | ⊢ ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  =  0ℎ | 
						
							| 52 | 51 | oveq2i | ⊢ ( - 1  ·ℎ  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) )  =  ( - 1  ·ℎ  0ℎ ) | 
						
							| 53 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 54 |  | hvmul0 | ⊢ ( - 1  ∈  ℂ  →  ( - 1  ·ℎ  0ℎ )  =  0ℎ ) | 
						
							| 55 | 53 54 | ax-mp | ⊢ ( - 1  ·ℎ  0ℎ )  =  0ℎ | 
						
							| 56 | 52 55 | eqtri | ⊢ ( - 1  ·ℎ  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) )  =  0ℎ | 
						
							| 57 | 41 56 | oveq12i | ⊢ ( ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) )  +ℎ  ( - 1  ·ℎ  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) )  =  ( ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 )  +ℎ  0ℎ ) | 
						
							| 58 | 28 2 | pjhclii | ⊢ ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 )  ∈   ℋ | 
						
							| 59 |  | ax-hvaddid | ⊢ ( ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 )  ∈   ℋ  →  ( ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 )  +ℎ  0ℎ )  =  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) | 
						
							| 60 | 58 59 | ax-mp | ⊢ ( ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 )  +ℎ  0ℎ )  =  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) | 
						
							| 61 | 57 60 | eqtri | ⊢ ( ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) )  +ℎ  ( - 1  ·ℎ  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) )  =  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) | 
						
							| 62 | 38 61 | eqtri | ⊢ ( ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) )  −ℎ  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) )  =  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) | 
						
							| 63 | 35 62 | eqtri | ⊢ ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) )  =  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) | 
						
							| 64 | 34 63 | eqtr3di | ⊢ ( 𝐻  ⊆  𝐺  →  ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 )  −ℎ  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) )  =  ( ( projℎ ‘ ( 𝐺  ∩  ( ⊥ ‘ 𝐻 ) ) ) ‘ 𝐴 ) ) |