Step |
Hyp |
Ref |
Expression |
1 |
|
pjidm.1 |
⊢ 𝐻 ∈ Cℋ |
2 |
|
pjidm.2 |
⊢ 𝐴 ∈ ℋ |
3 |
|
pjsub.3 |
⊢ 𝐵 ∈ ℋ |
4 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
5 |
4 3
|
hvmulcli |
⊢ ( - 1 ·ℎ 𝐵 ) ∈ ℋ |
6 |
1 2 5
|
pjaddii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ ( - 1 ·ℎ 𝐵 ) ) ) |
7 |
1 3 4
|
pjmulii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( - 1 ·ℎ 𝐵 ) ) = ( - 1 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) |
8 |
7
|
oveq2i |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ ( - 1 ·ℎ 𝐵 ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( - 1 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |
9 |
6 8
|
eqtri |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( - 1 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |
10 |
2 3
|
hvsubvali |
⊢ ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) |
11 |
10
|
fveq2i |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
12 |
1 2
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
13 |
1 3
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ∈ ℋ |
14 |
12 13
|
hvsubvali |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( - 1 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |
15 |
9 11 14
|
3eqtr4i |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) |