Metamath Proof Explorer


Theorem pjsubii

Description: Projection of vector difference is difference of projections. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjidm.1 𝐻C
pjidm.2 𝐴 ∈ ℋ
pjsub.3 𝐵 ∈ ℋ
Assertion pjsubii ( ( proj𝐻 ) ‘ ( 𝐴 𝐵 ) ) = ( ( ( proj𝐻 ) ‘ 𝐴 ) − ( ( proj𝐻 ) ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 pjidm.1 𝐻C
2 pjidm.2 𝐴 ∈ ℋ
3 pjsub.3 𝐵 ∈ ℋ
4 neg1cn - 1 ∈ ℂ
5 4 3 hvmulcli ( - 1 · 𝐵 ) ∈ ℋ
6 1 2 5 pjaddii ( ( proj𝐻 ) ‘ ( 𝐴 + ( - 1 · 𝐵 ) ) ) = ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj𝐻 ) ‘ ( - 1 · 𝐵 ) ) )
7 1 3 4 pjmulii ( ( proj𝐻 ) ‘ ( - 1 · 𝐵 ) ) = ( - 1 · ( ( proj𝐻 ) ‘ 𝐵 ) )
8 7 oveq2i ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( ( proj𝐻 ) ‘ ( - 1 · 𝐵 ) ) ) = ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( - 1 · ( ( proj𝐻 ) ‘ 𝐵 ) ) )
9 6 8 eqtri ( ( proj𝐻 ) ‘ ( 𝐴 + ( - 1 · 𝐵 ) ) ) = ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( - 1 · ( ( proj𝐻 ) ‘ 𝐵 ) ) )
10 2 3 hvsubvali ( 𝐴 𝐵 ) = ( 𝐴 + ( - 1 · 𝐵 ) )
11 10 fveq2i ( ( proj𝐻 ) ‘ ( 𝐴 𝐵 ) ) = ( ( proj𝐻 ) ‘ ( 𝐴 + ( - 1 · 𝐵 ) ) )
12 1 2 pjhclii ( ( proj𝐻 ) ‘ 𝐴 ) ∈ ℋ
13 1 3 pjhclii ( ( proj𝐻 ) ‘ 𝐵 ) ∈ ℋ
14 12 13 hvsubvali ( ( ( proj𝐻 ) ‘ 𝐴 ) − ( ( proj𝐻 ) ‘ 𝐵 ) ) = ( ( ( proj𝐻 ) ‘ 𝐴 ) + ( - 1 · ( ( proj𝐻 ) ‘ 𝐵 ) ) )
15 9 11 14 3eqtr4i ( ( proj𝐻 ) ‘ ( 𝐴 𝐵 ) ) = ( ( ( proj𝐻 ) ‘ 𝐴 ) − ( ( proj𝐻 ) ‘ 𝐵 ) )