Metamath Proof Explorer


Theorem pjsumi

Description: The projection on a subspace sum is the sum of the projections. (Contributed by NM, 11-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjsumt.1 𝐺C
pjsumt.2 𝐻C
Assertion pjsumi ( 𝐴 ∈ ℋ → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( proj ‘ ( 𝐺 + 𝐻 ) ) ‘ 𝐴 ) = ( ( ( proj𝐺 ) ‘ 𝐴 ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) ) )

Proof

Step Hyp Ref Expression
1 pjsumt.1 𝐺C
2 pjsumt.2 𝐻C
3 1 2 osumi ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( 𝐺 + 𝐻 ) = ( 𝐺 𝐻 ) )
4 3 fveq2d ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( proj ‘ ( 𝐺 + 𝐻 ) ) = ( proj ‘ ( 𝐺 𝐻 ) ) )
5 4 fveq1d ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( proj ‘ ( 𝐺 + 𝐻 ) ) ‘ 𝐴 ) = ( ( proj ‘ ( 𝐺 𝐻 ) ) ‘ 𝐴 ) )
6 5 adantl ( ( 𝐴 ∈ ℋ ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → ( ( proj ‘ ( 𝐺 + 𝐻 ) ) ‘ 𝐴 ) = ( ( proj ‘ ( 𝐺 𝐻 ) ) ‘ 𝐴 ) )
7 pjcjt2 ( ( 𝐺C𝐻C𝐴 ∈ ℋ ) → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( proj ‘ ( 𝐺 𝐻 ) ) ‘ 𝐴 ) = ( ( ( proj𝐺 ) ‘ 𝐴 ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) ) )
8 1 2 7 mp3an12 ( 𝐴 ∈ ℋ → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( proj ‘ ( 𝐺 𝐻 ) ) ‘ 𝐴 ) = ( ( ( proj𝐺 ) ‘ 𝐴 ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) ) )
9 8 imp ( ( 𝐴 ∈ ℋ ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → ( ( proj ‘ ( 𝐺 𝐻 ) ) ‘ 𝐴 ) = ( ( ( proj𝐺 ) ‘ 𝐴 ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) )
10 6 9 eqtrd ( ( 𝐴 ∈ ℋ ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → ( ( proj ‘ ( 𝐺 + 𝐻 ) ) ‘ 𝐴 ) = ( ( ( proj𝐺 ) ‘ 𝐴 ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) )
11 10 ex ( 𝐴 ∈ ℋ → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( proj ‘ ( 𝐺 + 𝐻 ) ) ‘ 𝐴 ) = ( ( ( proj𝐺 ) ‘ 𝐴 ) + ( ( proj𝐻 ) ‘ 𝐴 ) ) ) )