Metamath Proof Explorer


Theorem pjvec

Description: The set of vectors belonging to the subspace of a projection. Part of Theorem 26.2 of Halmos p. 44. (Contributed by NM, 11-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion pjvec ( 𝐻C𝐻 = { 𝑥 ∈ ℋ ∣ ( ( proj𝐻 ) ‘ 𝑥 ) = 𝑥 } )

Proof

Step Hyp Ref Expression
1 chss ( 𝐻C𝐻 ⊆ ℋ )
2 sseqin2 ( 𝐻 ⊆ ℋ ↔ ( ℋ ∩ 𝐻 ) = 𝐻 )
3 1 2 sylib ( 𝐻C → ( ℋ ∩ 𝐻 ) = 𝐻 )
4 pjch ( ( 𝐻C𝑥 ∈ ℋ ) → ( 𝑥𝐻 ↔ ( ( proj𝐻 ) ‘ 𝑥 ) = 𝑥 ) )
5 4 rabbi2dva ( 𝐻C → ( ℋ ∩ 𝐻 ) = { 𝑥 ∈ ℋ ∣ ( ( proj𝐻 ) ‘ 𝑥 ) = 𝑥 } )
6 3 5 eqtr3d ( 𝐻C𝐻 = { 𝑥 ∈ ℋ ∣ ( ( proj𝐻 ) ‘ 𝑥 ) = 𝑥 } )