Description: The set of vectors belonging to the subspace of a projection. Part of Theorem 26.2 of Halmos p. 44. (Contributed by NM, 11-Apr-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | pjvec | ⊢ ( 𝐻 ∈ Cℋ → 𝐻 = { 𝑥 ∈ ℋ ∣ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) = 𝑥 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chss | ⊢ ( 𝐻 ∈ Cℋ → 𝐻 ⊆ ℋ ) | |
2 | sseqin2 | ⊢ ( 𝐻 ⊆ ℋ ↔ ( ℋ ∩ 𝐻 ) = 𝐻 ) | |
3 | 1 2 | sylib | ⊢ ( 𝐻 ∈ Cℋ → ( ℋ ∩ 𝐻 ) = 𝐻 ) |
4 | pjch | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ∈ 𝐻 ↔ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) = 𝑥 ) ) | |
5 | 4 | rabbi2dva | ⊢ ( 𝐻 ∈ Cℋ → ( ℋ ∩ 𝐻 ) = { 𝑥 ∈ ℋ ∣ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) = 𝑥 } ) |
6 | 3 5 | eqtr3d | ⊢ ( 𝐻 ∈ Cℋ → 𝐻 = { 𝑥 ∈ ℋ ∣ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) = 𝑥 } ) |