Step |
Hyp |
Ref |
Expression |
1 |
|
plcofph.1 |
⊢ ( 𝜒 ↔ ( ( ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜑 ) → ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ∧ ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ) |
2 |
|
plcofph.2 |
⊢ 𝜑 |
3 |
|
plcofph.3 |
⊢ 𝜓 |
4 |
|
pm3.24 |
⊢ ¬ ( 𝜑 ∧ ¬ 𝜑 ) |
5 |
2 4
|
pm3.2i |
⊢ ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) |
6 |
5
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜑 ) → ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) |
7 |
6 5
|
pm3.2i |
⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜑 ) → ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ∧ ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) |
8 |
1
|
bicomi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜑 ) → ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ∧ ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ↔ 𝜒 ) |
9 |
8
|
biimpi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜑 ) → ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ∧ ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) → 𝜒 ) |
10 |
7 9
|
ax-mp |
⊢ 𝜒 |