Metamath Proof Explorer


Theorem plcofph

Description: Given, a,b and a "definition" for c, c is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020)

Ref Expression
Hypotheses plcofph.1 ( 𝜒 ↔ ( ( ( ( 𝜑𝜓 ) ↔ 𝜑 ) → ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ∧ ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) )
plcofph.2 𝜑
plcofph.3 𝜓
Assertion plcofph 𝜒

Proof

Step Hyp Ref Expression
1 plcofph.1 ( 𝜒 ↔ ( ( ( ( 𝜑𝜓 ) ↔ 𝜑 ) → ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ∧ ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) )
2 plcofph.2 𝜑
3 plcofph.3 𝜓
4 pm3.24 ¬ ( 𝜑 ∧ ¬ 𝜑 )
5 2 4 pm3.2i ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) )
6 5 a1i ( ( ( 𝜑𝜓 ) ↔ 𝜑 ) → ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) )
7 6 5 pm3.2i ( ( ( ( 𝜑𝜓 ) ↔ 𝜑 ) → ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ∧ ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) )
8 1 bicomi ( ( ( ( ( 𝜑𝜓 ) ↔ 𝜑 ) → ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ∧ ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ↔ 𝜒 )
9 8 biimpi ( ( ( ( ( 𝜑𝜓 ) ↔ 𝜑 ) → ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ∧ ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) → 𝜒 )
10 7 9 ax-mp 𝜒