Metamath Proof Explorer
Description: Given, a,b c, d, "definition" for e, e is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020)
|
|
Ref |
Expression |
|
Hypotheses |
pldofph.1 |
⊢ ( 𝜏 ↔ ( ( 𝜒 → 𝜃 ) ∧ ( 𝜑 ↔ 𝜒 ) ∧ ( ( 𝜑 → 𝜓 ) → ( 𝜓 ↔ 𝜃 ) ) ) ) |
|
|
pldofph.2 |
⊢ 𝜑 |
|
|
pldofph.3 |
⊢ 𝜓 |
|
|
pldofph.4 |
⊢ 𝜒 |
|
|
pldofph.5 |
⊢ 𝜃 |
|
Assertion |
pldofph |
⊢ 𝜏 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
pldofph.1 |
⊢ ( 𝜏 ↔ ( ( 𝜒 → 𝜃 ) ∧ ( 𝜑 ↔ 𝜒 ) ∧ ( ( 𝜑 → 𝜓 ) → ( 𝜓 ↔ 𝜃 ) ) ) ) |
2 |
|
pldofph.2 |
⊢ 𝜑 |
3 |
|
pldofph.3 |
⊢ 𝜓 |
4 |
|
pldofph.4 |
⊢ 𝜒 |
5 |
|
pldofph.5 |
⊢ 𝜃 |
6 |
5
|
a1i |
⊢ ( 𝜒 → 𝜃 ) |
7 |
2 4
|
2th |
⊢ ( 𝜑 ↔ 𝜒 ) |
8 |
3 5
|
2th |
⊢ ( 𝜓 ↔ 𝜃 ) |
9 |
8
|
a1i |
⊢ ( ( 𝜑 → 𝜓 ) → ( 𝜓 ↔ 𝜃 ) ) |
10 |
6 7 9
|
3pm3.2i |
⊢ ( ( 𝜒 → 𝜃 ) ∧ ( 𝜑 ↔ 𝜒 ) ∧ ( ( 𝜑 → 𝜓 ) → ( 𝜓 ↔ 𝜃 ) ) ) |
11 |
1
|
bicomi |
⊢ ( ( ( 𝜒 → 𝜃 ) ∧ ( 𝜑 ↔ 𝜒 ) ∧ ( ( 𝜑 → 𝜓 ) → ( 𝜓 ↔ 𝜃 ) ) ) ↔ 𝜏 ) |
12 |
11
|
biimpi |
⊢ ( ( ( 𝜒 → 𝜃 ) ∧ ( 𝜑 ↔ 𝜒 ) ∧ ( ( 𝜑 → 𝜓 ) → ( 𝜓 ↔ 𝜃 ) ) ) → 𝜏 ) |
13 |
10 12
|
ax-mp |
⊢ 𝜏 |