Metamath Proof Explorer


Theorem pldofph

Description: Given, a,b c, d, "definition" for e, e is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020)

Ref Expression
Hypotheses pldofph.1 ( 𝜏 ↔ ( ( 𝜒𝜃 ) ∧ ( 𝜑𝜒 ) ∧ ( ( 𝜑𝜓 ) → ( 𝜓𝜃 ) ) ) )
pldofph.2 𝜑
pldofph.3 𝜓
pldofph.4 𝜒
pldofph.5 𝜃
Assertion pldofph 𝜏

Proof

Step Hyp Ref Expression
1 pldofph.1 ( 𝜏 ↔ ( ( 𝜒𝜃 ) ∧ ( 𝜑𝜒 ) ∧ ( ( 𝜑𝜓 ) → ( 𝜓𝜃 ) ) ) )
2 pldofph.2 𝜑
3 pldofph.3 𝜓
4 pldofph.4 𝜒
5 pldofph.5 𝜃
6 5 a1i ( 𝜒𝜃 )
7 2 4 2th ( 𝜑𝜒 )
8 3 5 2th ( 𝜓𝜃 )
9 8 a1i ( ( 𝜑𝜓 ) → ( 𝜓𝜃 ) )
10 6 7 9 3pm3.2i ( ( 𝜒𝜃 ) ∧ ( 𝜑𝜒 ) ∧ ( ( 𝜑𝜓 ) → ( 𝜓𝜃 ) ) )
11 1 bicomi ( ( ( 𝜒𝜃 ) ∧ ( 𝜑𝜒 ) ∧ ( ( 𝜑𝜓 ) → ( 𝜓𝜃 ) ) ) ↔ 𝜏 )
12 11 biimpi ( ( ( 𝜒𝜃 ) ∧ ( 𝜑𝜒 ) ∧ ( ( 𝜑𝜓 ) → ( 𝜓𝜃 ) ) ) → 𝜏 )
13 10 12 ax-mp 𝜏