Metamath Proof Explorer
		
		
		
		Description:  Any element is less than or equal to a poset's upper bound (if defined).
       (Contributed by NM, 22-Oct-2011)  (Revised by NM, 13-Sep-2018)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						ple1.b | 
						⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
					
					
						 | 
						 | 
						ple1.u | 
						⊢ 𝑈  =  ( lub ‘ 𝐾 )  | 
					
					
						 | 
						 | 
						ple1.l | 
						⊢  ≤   =  ( le ‘ 𝐾 )  | 
					
					
						 | 
						 | 
						ple1.1 | 
						⊢  1   =  ( 1. ‘ 𝐾 )  | 
					
					
						 | 
						 | 
						ple1.k | 
						⊢ ( 𝜑  →  𝐾  ∈  𝑉 )  | 
					
					
						 | 
						 | 
						ple1.x | 
						⊢ ( 𝜑  →  𝑋  ∈  𝐵 )  | 
					
					
						 | 
						 | 
						ple1.d | 
						⊢ ( 𝜑  →  𝐵  ∈  dom  𝑈 )  | 
					
				
					 | 
					Assertion | 
					ple1 | 
					⊢  ( 𝜑  →  𝑋  ≤   1  )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ple1.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							ple1.u | 
							⊢ 𝑈  =  ( lub ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							ple1.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							ple1.1 | 
							⊢  1   =  ( 1. ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							ple1.k | 
							⊢ ( 𝜑  →  𝐾  ∈  𝑉 )  | 
						
						
							| 6 | 
							
								
							 | 
							ple1.x | 
							⊢ ( 𝜑  →  𝑋  ∈  𝐵 )  | 
						
						
							| 7 | 
							
								
							 | 
							ple1.d | 
							⊢ ( 𝜑  →  𝐵  ∈  dom  𝑈 )  | 
						
						
							| 8 | 
							
								1 3 2 5 7 6
							 | 
							luble | 
							⊢ ( 𝜑  →  𝑋  ≤  ( 𝑈 ‘ 𝐵 ) )  | 
						
						
							| 9 | 
							
								1 2 4
							 | 
							p1val | 
							⊢ ( 𝐾  ∈  𝑉  →   1   =  ( 𝑈 ‘ 𝐵 ) )  | 
						
						
							| 10 | 
							
								5 9
							 | 
							syl | 
							⊢ ( 𝜑  →   1   =  ( 𝑈 ‘ 𝐵 ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							breqtrrd | 
							⊢ ( 𝜑  →  𝑋  ≤   1  )  |