Metamath Proof Explorer


Theorem plendxnbasendx

Description: The slot for the order is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024)

Ref Expression
Assertion plendxnbasendx ( le ‘ ndx ) ≠ ( Base ‘ ndx )

Proof

Step Hyp Ref Expression
1 1re 1 ∈ ℝ
2 1lt10 1 < 1 0
3 1 2 gtneii 1 0 ≠ 1
4 plendx ( le ‘ ndx ) = 1 0
5 basendx ( Base ‘ ndx ) = 1
6 4 5 neeq12i ( ( le ‘ ndx ) ≠ ( Base ‘ ndx ) ↔ 1 0 ≠ 1 )
7 3 6 mpbir ( le ‘ ndx ) ≠ ( Base ‘ ndx )