Metamath Proof Explorer
Description: The slot for the order is not the slot for the base set in an extensible
structure. (Contributed by AV, 21-Oct-2024)
|
|
Ref |
Expression |
|
Assertion |
plendxnbasendx |
⊢ ( le ‘ ndx ) ≠ ( Base ‘ ndx ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
⊢ 1 ∈ ℝ |
2 |
|
1lt10 |
⊢ 1 < ; 1 0 |
3 |
1 2
|
gtneii |
⊢ ; 1 0 ≠ 1 |
4 |
|
plendx |
⊢ ( le ‘ ndx ) = ; 1 0 |
5 |
|
basendx |
⊢ ( Base ‘ ndx ) = 1 |
6 |
4 5
|
neeq12i |
⊢ ( ( le ‘ ndx ) ≠ ( Base ‘ ndx ) ↔ ; 1 0 ≠ 1 ) |
7 |
3 6
|
mpbir |
⊢ ( le ‘ ndx ) ≠ ( Base ‘ ndx ) |