| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pleval2.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | pleval2.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | pleval2.s | ⊢  <   =  ( lt ‘ 𝐾 ) | 
						
							| 4 |  | elfvdm | ⊢ ( 𝑋  ∈  ( Base ‘ 𝐾 )  →  𝐾  ∈  dom  Base ) | 
						
							| 5 | 4 1 | eleq2s | ⊢ ( 𝑋  ∈  𝐵  →  𝐾  ∈  dom  Base ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐾  ∈  dom  Base ) | 
						
							| 7 | 2 3 | pltval | ⊢ ( ( 𝐾  ∈  dom  Base  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  <  𝑌  ↔  ( 𝑋  ≤  𝑌  ∧  𝑋  ≠  𝑌 ) ) ) | 
						
							| 8 | 7 | 3expb | ⊢ ( ( 𝐾  ∈  dom  Base  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋  <  𝑌  ↔  ( 𝑋  ≤  𝑌  ∧  𝑋  ≠  𝑌 ) ) ) | 
						
							| 9 | 6 8 | mpancom | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  <  𝑌  ↔  ( 𝑋  ≤  𝑌  ∧  𝑋  ≠  𝑌 ) ) ) | 
						
							| 10 | 9 | biimpar | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑌  ∧  𝑋  ≠  𝑌 ) )  →  𝑋  <  𝑌 ) | 
						
							| 11 | 10 | expr | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑌 )  →  ( 𝑋  ≠  𝑌  →  𝑋  <  𝑌 ) ) | 
						
							| 12 | 11 | necon1bd | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑌 )  →  ( ¬  𝑋  <  𝑌  →  𝑋  =  𝑌 ) ) | 
						
							| 13 | 12 | orrd | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑌 )  →  ( 𝑋  <  𝑌  ∨  𝑋  =  𝑌 ) ) | 
						
							| 14 | 13 | ex | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ≤  𝑌  →  ( 𝑋  <  𝑌  ∨  𝑋  =  𝑌 ) ) ) |