Metamath Proof Explorer


Theorem pleval2i

Description: One direction of pleval2 . (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses pleval2.b 𝐵 = ( Base ‘ 𝐾 )
pleval2.l = ( le ‘ 𝐾 )
pleval2.s < = ( lt ‘ 𝐾 )
Assertion pleval2i ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 → ( 𝑋 < 𝑌𝑋 = 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 pleval2.b 𝐵 = ( Base ‘ 𝐾 )
2 pleval2.l = ( le ‘ 𝐾 )
3 pleval2.s < = ( lt ‘ 𝐾 )
4 elfvdm ( 𝑋 ∈ ( Base ‘ 𝐾 ) → 𝐾 ∈ dom Base )
5 4 1 eleq2s ( 𝑋𝐵𝐾 ∈ dom Base )
6 5 adantr ( ( 𝑋𝐵𝑌𝐵 ) → 𝐾 ∈ dom Base )
7 2 3 pltval ( ( 𝐾 ∈ dom Base ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 𝑌𝑋𝑌 ) ) )
8 7 3expb ( ( 𝐾 ∈ dom Base ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 𝑌𝑋𝑌 ) ) )
9 6 8 mpancom ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 𝑌𝑋𝑌 ) ) )
10 9 biimpar ( ( ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌𝑋𝑌 ) ) → 𝑋 < 𝑌 )
11 10 expr ( ( ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) → ( 𝑋𝑌𝑋 < 𝑌 ) )
12 11 necon1bd ( ( ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) → ( ¬ 𝑋 < 𝑌𝑋 = 𝑌 ) )
13 12 orrd ( ( ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) → ( 𝑋 < 𝑌𝑋 = 𝑌 ) )
14 13 ex ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 → ( 𝑋 < 𝑌𝑋 = 𝑌 ) ) )