| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pleval2.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							pleval2.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							pleval2.s | 
							⊢  <   =  ( lt ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							elfvdm | 
							⊢ ( 𝑋  ∈  ( Base ‘ 𝐾 )  →  𝐾  ∈  dom  Base )  | 
						
						
							| 5 | 
							
								4 1
							 | 
							eleq2s | 
							⊢ ( 𝑋  ∈  𝐵  →  𝐾  ∈  dom  Base )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐾  ∈  dom  Base )  | 
						
						
							| 7 | 
							
								2 3
							 | 
							pltval | 
							⊢ ( ( 𝐾  ∈  dom  Base  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  <  𝑌  ↔  ( 𝑋  ≤  𝑌  ∧  𝑋  ≠  𝑌 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							3expb | 
							⊢ ( ( 𝐾  ∈  dom  Base  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋  <  𝑌  ↔  ( 𝑋  ≤  𝑌  ∧  𝑋  ≠  𝑌 ) ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							mpancom | 
							⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  <  𝑌  ↔  ( 𝑋  ≤  𝑌  ∧  𝑋  ≠  𝑌 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							biimpar | 
							⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝑋  ≤  𝑌  ∧  𝑋  ≠  𝑌 ) )  →  𝑋  <  𝑌 )  | 
						
						
							| 11 | 
							
								10
							 | 
							expr | 
							⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑌 )  →  ( 𝑋  ≠  𝑌  →  𝑋  <  𝑌 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							necon1bd | 
							⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑌 )  →  ( ¬  𝑋  <  𝑌  →  𝑋  =  𝑌 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							orrd | 
							⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑌 )  →  ( 𝑋  <  𝑌  ∨  𝑋  =  𝑌 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							ex | 
							⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ≤  𝑌  →  ( 𝑋  <  𝑌  ∨  𝑋  =  𝑌 ) ) )  |