Metamath Proof Explorer


Theorem plpv

Description: Value of addition on positive reals. (Contributed by NM, 28-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion plpv ( ( 𝐴P𝐵P ) → ( 𝐴 +P 𝐵 ) = { 𝑥 ∣ ∃ 𝑦𝐴𝑧𝐵 𝑥 = ( 𝑦 +Q 𝑧 ) } )

Proof

Step Hyp Ref Expression
1 df-plp +P = ( 𝑢P , 𝑣P ↦ { 𝑓 ∣ ∃ 𝑔𝑢𝑣 𝑓 = ( 𝑔 +Q ) } )
2 addclnq ( ( 𝑔QQ ) → ( 𝑔 +Q ) ∈ Q )
3 1 2 genpv ( ( 𝐴P𝐵P ) → ( 𝐴 +P 𝐵 ) = { 𝑥 ∣ ∃ 𝑦𝐴𝑧𝐵 𝑥 = ( 𝑦 +Q 𝑧 ) } )