Metamath Proof Explorer


Theorem pltfval

Description: Value of the less-than relation. (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses pltval.l = ( le ‘ 𝐾 )
pltval.s < = ( lt ‘ 𝐾 )
Assertion pltfval ( 𝐾𝐴< = ( ∖ I ) )

Proof

Step Hyp Ref Expression
1 pltval.l = ( le ‘ 𝐾 )
2 pltval.s < = ( lt ‘ 𝐾 )
3 elex ( 𝐾𝐴𝐾 ∈ V )
4 fveq2 ( 𝑝 = 𝐾 → ( le ‘ 𝑝 ) = ( le ‘ 𝐾 ) )
5 4 1 eqtr4di ( 𝑝 = 𝐾 → ( le ‘ 𝑝 ) = )
6 5 difeq1d ( 𝑝 = 𝐾 → ( ( le ‘ 𝑝 ) ∖ I ) = ( ∖ I ) )
7 df-plt lt = ( 𝑝 ∈ V ↦ ( ( le ‘ 𝑝 ) ∖ I ) )
8 1 fvexi ∈ V
9 8 difexi ( ∖ I ) ∈ V
10 6 7 9 fvmpt ( 𝐾 ∈ V → ( lt ‘ 𝐾 ) = ( ∖ I ) )
11 3 10 syl ( 𝐾𝐴 → ( lt ‘ 𝐾 ) = ( ∖ I ) )
12 2 11 eqtrid ( 𝐾𝐴< = ( ∖ I ) )