Metamath Proof Explorer


Theorem pltirr

Description: The "less than" relation is not reflexive. ( pssirr analog.) (Contributed by NM, 7-Feb-2012)

Ref Expression
Hypothesis pltne.s < = ( lt ‘ 𝐾 )
Assertion pltirr ( ( 𝐾𝐴𝑋𝐵 ) → ¬ 𝑋 < 𝑋 )

Proof

Step Hyp Ref Expression
1 pltne.s < = ( lt ‘ 𝐾 )
2 eqid 𝑋 = 𝑋
3 1 pltne ( ( 𝐾𝐴𝑋𝐵𝑋𝐵 ) → ( 𝑋 < 𝑋𝑋𝑋 ) )
4 3 3anidm23 ( ( 𝐾𝐴𝑋𝐵 ) → ( 𝑋 < 𝑋𝑋𝑋 ) )
5 4 necon2bd ( ( 𝐾𝐴𝑋𝐵 ) → ( 𝑋 = 𝑋 → ¬ 𝑋 < 𝑋 ) )
6 2 5 mpi ( ( 𝐾𝐴𝑋𝐵 ) → ¬ 𝑋 < 𝑋 )