Description: The "less than" relation is not reflexive. ( pssirr analog.) (Contributed by NM, 7-Feb-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pltne.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| Assertion | pltirr | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ¬ 𝑋 < 𝑋 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pltne.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 2 | eqid | ⊢ 𝑋 = 𝑋 | |
| 3 | 1 | pltne | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 < 𝑋 → 𝑋 ≠ 𝑋 ) ) | 
| 4 | 3 | 3anidm23 | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 < 𝑋 → 𝑋 ≠ 𝑋 ) ) | 
| 5 | 4 | necon2bd | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 = 𝑋 → ¬ 𝑋 < 𝑋 ) ) | 
| 6 | 2 5 | mpi | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ¬ 𝑋 < 𝑋 ) |