Description: The "less than" relation is not reflexive. ( pssirr analog.) (Contributed by NM, 7-Feb-2012)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pltne.s | ⊢ < = ( lt ‘ 𝐾 ) | |
Assertion | pltirr | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ¬ 𝑋 < 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pltne.s | ⊢ < = ( lt ‘ 𝐾 ) | |
2 | eqid | ⊢ 𝑋 = 𝑋 | |
3 | 1 | pltne | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 < 𝑋 → 𝑋 ≠ 𝑋 ) ) |
4 | 3 | 3anidm23 | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 < 𝑋 → 𝑋 ≠ 𝑋 ) ) |
5 | 4 | necon2bd | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 = 𝑋 → ¬ 𝑋 < 𝑋 ) ) |
6 | 2 5 | mpi | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ¬ 𝑋 < 𝑋 ) |