Metamath Proof Explorer


Theorem pltletr

Description: Transitive law for chained "less than" and "less than or equal to". ( psssstr analog.) (Contributed by NM, 2-Dec-2011)

Ref Expression
Hypotheses pltletr.b 𝐵 = ( Base ‘ 𝐾 )
pltletr.l = ( le ‘ 𝐾 )
pltletr.s < = ( lt ‘ 𝐾 )
Assertion pltletr ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 < 𝑌𝑌 𝑍 ) → 𝑋 < 𝑍 ) )

Proof

Step Hyp Ref Expression
1 pltletr.b 𝐵 = ( Base ‘ 𝐾 )
2 pltletr.l = ( le ‘ 𝐾 )
3 pltletr.s < = ( lt ‘ 𝐾 )
4 1 2 3 pleval2 ( ( 𝐾 ∈ Poset ∧ 𝑌𝐵𝑍𝐵 ) → ( 𝑌 𝑍 ↔ ( 𝑌 < 𝑍𝑌 = 𝑍 ) ) )
5 4 3adant3r1 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑌 𝑍 ↔ ( 𝑌 < 𝑍𝑌 = 𝑍 ) ) )
6 5 adantr ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑌 𝑍 ↔ ( 𝑌 < 𝑍𝑌 = 𝑍 ) ) )
7 1 3 plttr ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 < 𝑌𝑌 < 𝑍 ) → 𝑋 < 𝑍 ) )
8 7 expdimp ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑌 < 𝑍𝑋 < 𝑍 ) )
9 breq2 ( 𝑌 = 𝑍 → ( 𝑋 < 𝑌𝑋 < 𝑍 ) )
10 9 biimpcd ( 𝑋 < 𝑌 → ( 𝑌 = 𝑍𝑋 < 𝑍 ) )
11 10 adantl ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑌 = 𝑍𝑋 < 𝑍 ) )
12 8 11 jaod ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑋 < 𝑌 ) → ( ( 𝑌 < 𝑍𝑌 = 𝑍 ) → 𝑋 < 𝑍 ) )
13 6 12 sylbid ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑌 𝑍𝑋 < 𝑍 ) )
14 13 expimpd ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 < 𝑌𝑌 𝑍 ) → 𝑋 < 𝑍 ) )