Metamath Proof Explorer


Theorem pltne

Description: The "less than" relation is not reflexive. ( df-pss analog.) (Contributed by NM, 2-Dec-2011)

Ref Expression
Hypothesis pltne.s < = ( lt ‘ 𝐾 )
Assertion pltne ( ( 𝐾𝐴𝑋𝐵𝑌𝐶 ) → ( 𝑋 < 𝑌𝑋𝑌 ) )

Proof

Step Hyp Ref Expression
1 pltne.s < = ( lt ‘ 𝐾 )
2 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
3 2 1 pltval ( ( 𝐾𝐴𝑋𝐵𝑌𝐶 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ( le ‘ 𝐾 ) 𝑌𝑋𝑌 ) ) )
4 3 simplbda ( ( ( 𝐾𝐴𝑋𝐵𝑌𝐶 ) ∧ 𝑋 < 𝑌 ) → 𝑋𝑌 )
5 4 ex ( ( 𝐾𝐴𝑋𝐵𝑌𝐶 ) → ( 𝑋 < 𝑌𝑋𝑌 ) )