Metamath Proof Explorer


Theorem pltnle

Description: "Less than" implies not converse "less than or equal to". (Contributed by NM, 18-Oct-2011)

Ref Expression
Hypotheses pleval2.b 𝐵 = ( Base ‘ 𝐾 )
pleval2.l = ( le ‘ 𝐾 )
pleval2.s < = ( lt ‘ 𝐾 )
Assertion pltnle ( ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 < 𝑌 ) → ¬ 𝑌 𝑋 )

Proof

Step Hyp Ref Expression
1 pleval2.b 𝐵 = ( Base ‘ 𝐾 )
2 pleval2.l = ( le ‘ 𝐾 )
3 pleval2.s < = ( lt ‘ 𝐾 )
4 2 3 pltval ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 𝑌𝑋𝑌 ) ) )
5 1 2 posasymb ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌𝑌 𝑋 ) ↔ 𝑋 = 𝑌 ) )
6 5 biimpd ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌𝑌 𝑋 ) → 𝑋 = 𝑌 ) )
7 6 expdimp ( ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) → ( 𝑌 𝑋𝑋 = 𝑌 ) )
8 7 necon3ad ( ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) → ( 𝑋𝑌 → ¬ 𝑌 𝑋 ) )
9 8 expimpd ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌𝑋𝑌 ) → ¬ 𝑌 𝑋 ) )
10 4 9 sylbid ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 < 𝑌 → ¬ 𝑌 𝑋 ) )
11 10 imp ( ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 < 𝑌 ) → ¬ 𝑌 𝑋 )