Metamath Proof Explorer


Theorem pltnlt

Description: The less-than relation implies the negation of its inverse. (Contributed by NM, 18-Oct-2011)

Ref Expression
Hypotheses pltnlt.b 𝐵 = ( Base ‘ 𝐾 )
pltnlt.s < = ( lt ‘ 𝐾 )
Assertion pltnlt ( ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 < 𝑌 ) → ¬ 𝑌 < 𝑋 )

Proof

Step Hyp Ref Expression
1 pltnlt.b 𝐵 = ( Base ‘ 𝐾 )
2 pltnlt.s < = ( lt ‘ 𝐾 )
3 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
4 1 3 2 pltnle ( ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 < 𝑌 ) → ¬ 𝑌 ( le ‘ 𝐾 ) 𝑋 )
5 3 2 pltle ( ( 𝐾 ∈ Poset ∧ 𝑌𝐵𝑋𝐵 ) → ( 𝑌 < 𝑋𝑌 ( le ‘ 𝐾 ) 𝑋 ) )
6 5 3com23 ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑌 < 𝑋𝑌 ( le ‘ 𝐾 ) 𝑋 ) )
7 6 adantr ( ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑌 < 𝑋𝑌 ( le ‘ 𝐾 ) 𝑋 ) )
8 4 7 mtod ( ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 < 𝑌 ) → ¬ 𝑌 < 𝑋 )