Metamath Proof Explorer


Theorem plttr

Description: The less-than relation is transitive. ( psstr analog.) (Contributed by NM, 2-Dec-2011)

Ref Expression
Hypotheses pltnlt.b 𝐵 = ( Base ‘ 𝐾 )
pltnlt.s < = ( lt ‘ 𝐾 )
Assertion plttr ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 < 𝑌𝑌 < 𝑍 ) → 𝑋 < 𝑍 ) )

Proof

Step Hyp Ref Expression
1 pltnlt.b 𝐵 = ( Base ‘ 𝐾 )
2 pltnlt.s < = ( lt ‘ 𝐾 )
3 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
4 3 2 pltle ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 < 𝑌𝑋 ( le ‘ 𝐾 ) 𝑌 ) )
5 4 3adant3r3 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 < 𝑌𝑋 ( le ‘ 𝐾 ) 𝑌 ) )
6 3 2 pltle ( ( 𝐾 ∈ Poset ∧ 𝑌𝐵𝑍𝐵 ) → ( 𝑌 < 𝑍𝑌 ( le ‘ 𝐾 ) 𝑍 ) )
7 6 3adant3r1 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑌 < 𝑍𝑌 ( le ‘ 𝐾 ) 𝑍 ) )
8 1 3 postr ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 ( le ‘ 𝐾 ) 𝑌𝑌 ( le ‘ 𝐾 ) 𝑍 ) → 𝑋 ( le ‘ 𝐾 ) 𝑍 ) )
9 5 7 8 syl2and ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 < 𝑌𝑌 < 𝑍 ) → 𝑋 ( le ‘ 𝐾 ) 𝑍 ) )
10 1 2 pltn2lp ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ¬ ( 𝑋 < 𝑌𝑌 < 𝑋 ) )
11 10 3adant3r3 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ¬ ( 𝑋 < 𝑌𝑌 < 𝑋 ) )
12 breq2 ( 𝑋 = 𝑍 → ( 𝑌 < 𝑋𝑌 < 𝑍 ) )
13 12 anbi2d ( 𝑋 = 𝑍 → ( ( 𝑋 < 𝑌𝑌 < 𝑋 ) ↔ ( 𝑋 < 𝑌𝑌 < 𝑍 ) ) )
14 13 notbid ( 𝑋 = 𝑍 → ( ¬ ( 𝑋 < 𝑌𝑌 < 𝑋 ) ↔ ¬ ( 𝑋 < 𝑌𝑌 < 𝑍 ) ) )
15 11 14 syl5ibcom ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 = 𝑍 → ¬ ( 𝑋 < 𝑌𝑌 < 𝑍 ) ) )
16 15 necon2ad ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 < 𝑌𝑌 < 𝑍 ) → 𝑋𝑍 ) )
17 9 16 jcad ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 < 𝑌𝑌 < 𝑍 ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑍𝑋𝑍 ) ) )
18 3 2 pltval ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑍𝐵 ) → ( 𝑋 < 𝑍 ↔ ( 𝑋 ( le ‘ 𝐾 ) 𝑍𝑋𝑍 ) ) )
19 18 3adant3r2 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 < 𝑍 ↔ ( 𝑋 ( le ‘ 𝐾 ) 𝑍𝑋𝑍 ) ) )
20 17 19 sylibrd ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 < 𝑌𝑌 < 𝑍 ) → 𝑋 < 𝑍 ) )