Step |
Hyp |
Ref |
Expression |
1 |
|
pltnlt.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
pltnlt.s |
⊢ < = ( lt ‘ 𝐾 ) |
3 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
4 |
3 2
|
pltle |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → 𝑋 ( le ‘ 𝐾 ) 𝑌 ) ) |
5 |
4
|
3adant3r3 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 < 𝑌 → 𝑋 ( le ‘ 𝐾 ) 𝑌 ) ) |
6 |
3 2
|
pltle |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 < 𝑍 → 𝑌 ( le ‘ 𝐾 ) 𝑍 ) ) |
7 |
6
|
3adant3r1 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 < 𝑍 → 𝑌 ( le ‘ 𝐾 ) 𝑍 ) ) |
8 |
1 3
|
postr |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ( le ‘ 𝐾 ) 𝑌 ∧ 𝑌 ( le ‘ 𝐾 ) 𝑍 ) → 𝑋 ( le ‘ 𝐾 ) 𝑍 ) ) |
9 |
5 7 8
|
syl2and |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑍 ) → 𝑋 ( le ‘ 𝐾 ) 𝑍 ) ) |
10 |
1 2
|
pltn2lp |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ¬ ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑋 ) ) |
11 |
10
|
3adant3r3 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ¬ ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑋 ) ) |
12 |
|
breq2 |
⊢ ( 𝑋 = 𝑍 → ( 𝑌 < 𝑋 ↔ 𝑌 < 𝑍 ) ) |
13 |
12
|
anbi2d |
⊢ ( 𝑋 = 𝑍 → ( ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑋 ) ↔ ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑍 ) ) ) |
14 |
13
|
notbid |
⊢ ( 𝑋 = 𝑍 → ( ¬ ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑋 ) ↔ ¬ ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑍 ) ) ) |
15 |
11 14
|
syl5ibcom |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 = 𝑍 → ¬ ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑍 ) ) ) |
16 |
15
|
necon2ad |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑍 ) → 𝑋 ≠ 𝑍 ) ) |
17 |
9 16
|
jcad |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑍 ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑍 ∧ 𝑋 ≠ 𝑍 ) ) ) |
18 |
3 2
|
pltval |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 < 𝑍 ↔ ( 𝑋 ( le ‘ 𝐾 ) 𝑍 ∧ 𝑋 ≠ 𝑍 ) ) ) |
19 |
18
|
3adant3r2 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 < 𝑍 ↔ ( 𝑋 ( le ‘ 𝐾 ) 𝑍 ∧ 𝑋 ≠ 𝑍 ) ) ) |
20 |
17 19
|
sylibrd |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 < 𝑌 ∧ 𝑌 < 𝑍 ) → 𝑋 < 𝑍 ) ) |