Metamath Proof Explorer


Theorem pltval

Description: Less-than relation. ( df-pss analog.) (Contributed by NM, 12-Oct-2011)

Ref Expression
Hypotheses pltval.l = ( le ‘ 𝐾 )
pltval.s < = ( lt ‘ 𝐾 )
Assertion pltval ( ( 𝐾𝐴𝑋𝐵𝑌𝐶 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 𝑌𝑋𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 pltval.l = ( le ‘ 𝐾 )
2 pltval.s < = ( lt ‘ 𝐾 )
3 1 2 pltfval ( 𝐾𝐴< = ( ∖ I ) )
4 3 breqd ( 𝐾𝐴 → ( 𝑋 < 𝑌𝑋 ( ∖ I ) 𝑌 ) )
5 brdif ( 𝑋 ( ∖ I ) 𝑌 ↔ ( 𝑋 𝑌 ∧ ¬ 𝑋 I 𝑌 ) )
6 ideqg ( 𝑌𝐶 → ( 𝑋 I 𝑌𝑋 = 𝑌 ) )
7 6 necon3bbid ( 𝑌𝐶 → ( ¬ 𝑋 I 𝑌𝑋𝑌 ) )
8 7 adantl ( ( 𝑋𝐵𝑌𝐶 ) → ( ¬ 𝑋 I 𝑌𝑋𝑌 ) )
9 8 anbi2d ( ( 𝑋𝐵𝑌𝐶 ) → ( ( 𝑋 𝑌 ∧ ¬ 𝑋 I 𝑌 ) ↔ ( 𝑋 𝑌𝑋𝑌 ) ) )
10 5 9 syl5bb ( ( 𝑋𝐵𝑌𝐶 ) → ( 𝑋 ( ∖ I ) 𝑌 ↔ ( 𝑋 𝑌𝑋𝑌 ) ) )
11 4 10 sylan9bb ( ( 𝐾𝐴 ∧ ( 𝑋𝐵𝑌𝐶 ) ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 𝑌𝑋𝑌 ) ) )
12 11 3impb ( ( 𝐾𝐴𝑋𝐵𝑌𝐶 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 𝑌𝑋𝑌 ) ) )