| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pltval.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							pltval.s | 
							⊢  <   =  ( lt ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							pltfval | 
							⊢ ( 𝐾  ∈  𝐴  →   <   =  (  ≤   ∖   I  ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							breqd | 
							⊢ ( 𝐾  ∈  𝐴  →  ( 𝑋  <  𝑌  ↔  𝑋 (  ≤   ∖   I  ) 𝑌 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							brdif | 
							⊢ ( 𝑋 (  ≤   ∖   I  ) 𝑌  ↔  ( 𝑋  ≤  𝑌  ∧  ¬  𝑋  I  𝑌 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ideqg | 
							⊢ ( 𝑌  ∈  𝐶  →  ( 𝑋  I  𝑌  ↔  𝑋  =  𝑌 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							necon3bbid | 
							⊢ ( 𝑌  ∈  𝐶  →  ( ¬  𝑋  I  𝑌  ↔  𝑋  ≠  𝑌 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantl | 
							⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐶 )  →  ( ¬  𝑋  I  𝑌  ↔  𝑋  ≠  𝑌 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							anbi2d | 
							⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐶 )  →  ( ( 𝑋  ≤  𝑌  ∧  ¬  𝑋  I  𝑌 )  ↔  ( 𝑋  ≤  𝑌  ∧  𝑋  ≠  𝑌 ) ) )  | 
						
						
							| 10 | 
							
								5 9
							 | 
							bitrid | 
							⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐶 )  →  ( 𝑋 (  ≤   ∖   I  ) 𝑌  ↔  ( 𝑋  ≤  𝑌  ∧  𝑋  ≠  𝑌 ) ) )  | 
						
						
							| 11 | 
							
								4 10
							 | 
							sylan9bb | 
							⊢ ( ( 𝐾  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐶 ) )  →  ( 𝑋  <  𝑌  ↔  ( 𝑋  ≤  𝑌  ∧  𝑋  ≠  𝑌 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							3impb | 
							⊢ ( ( 𝐾  ∈  𝐴  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐶 )  →  ( 𝑋  <  𝑌  ↔  ( 𝑋  ≤  𝑌  ∧  𝑋  ≠  𝑌 ) ) )  |