Step |
Hyp |
Ref |
Expression |
1 |
|
pltval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
pltval.s |
⊢ < = ( lt ‘ 𝐾 ) |
3 |
1 2
|
pltfval |
⊢ ( 𝐾 ∈ 𝐴 → < = ( ≤ ∖ I ) ) |
4 |
3
|
breqd |
⊢ ( 𝐾 ∈ 𝐴 → ( 𝑋 < 𝑌 ↔ 𝑋 ( ≤ ∖ I ) 𝑌 ) ) |
5 |
|
brdif |
⊢ ( 𝑋 ( ≤ ∖ I ) 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ ¬ 𝑋 I 𝑌 ) ) |
6 |
|
ideqg |
⊢ ( 𝑌 ∈ 𝐶 → ( 𝑋 I 𝑌 ↔ 𝑋 = 𝑌 ) ) |
7 |
6
|
necon3bbid |
⊢ ( 𝑌 ∈ 𝐶 → ( ¬ 𝑋 I 𝑌 ↔ 𝑋 ≠ 𝑌 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶 ) → ( ¬ 𝑋 I 𝑌 ↔ 𝑋 ≠ 𝑌 ) ) |
9 |
8
|
anbi2d |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶 ) → ( ( 𝑋 ≤ 𝑌 ∧ ¬ 𝑋 I 𝑌 ) ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
10 |
5 9
|
syl5bb |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶 ) → ( 𝑋 ( ≤ ∖ I ) 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
11 |
4 10
|
sylan9bb |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
12 |
11
|
3impb |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |