Step |
Hyp |
Ref |
Expression |
1 |
|
pleval2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
pleval2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
pleval2.s |
⊢ < = ( lt ‘ 𝐾 ) |
4 |
2 3
|
pltval |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
5 |
1 2
|
posref |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |
7 |
|
breq1 |
⊢ ( 𝑋 = 𝑌 → ( 𝑋 ≤ 𝑋 ↔ 𝑌 ≤ 𝑋 ) ) |
8 |
6 7
|
syl5ibcom |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = 𝑌 → 𝑌 ≤ 𝑋 ) ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 = 𝑌 → 𝑌 ≤ 𝑋 ) ) |
10 |
1 2
|
posasymb |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) ↔ 𝑋 = 𝑌 ) ) |
11 |
10
|
biimpd |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) → 𝑋 = 𝑌 ) ) |
12 |
11
|
expdimp |
⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑌 ≤ 𝑋 → 𝑋 = 𝑌 ) ) |
13 |
9 12
|
impbid |
⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 = 𝑌 ↔ 𝑌 ≤ 𝑋 ) ) |
14 |
13
|
necon3abid |
⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ≠ 𝑌 ↔ ¬ 𝑌 ≤ 𝑋 ) ) |
15 |
14
|
pm5.32da |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ↔ ( 𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋 ) ) ) |
16 |
4 15
|
bitrd |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋 ) ) ) |