Metamath Proof Explorer


Theorem pltval3

Description: Alternate expression for the "less than" relation. ( dfpss3 analog.) (Contributed by NM, 4-Nov-2011)

Ref Expression
Hypotheses pleval2.b 𝐵 = ( Base ‘ 𝐾 )
pleval2.l = ( le ‘ 𝐾 )
pleval2.s < = ( lt ‘ 𝐾 )
Assertion pltval3 ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 𝑌 ∧ ¬ 𝑌 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 pleval2.b 𝐵 = ( Base ‘ 𝐾 )
2 pleval2.l = ( le ‘ 𝐾 )
3 pleval2.s < = ( lt ‘ 𝐾 )
4 2 3 pltval ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 𝑌𝑋𝑌 ) ) )
5 1 2 posref ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵 ) → 𝑋 𝑋 )
6 5 3adant3 ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → 𝑋 𝑋 )
7 breq1 ( 𝑋 = 𝑌 → ( 𝑋 𝑋𝑌 𝑋 ) )
8 6 7 syl5ibcom ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 = 𝑌𝑌 𝑋 ) )
9 8 adantr ( ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) → ( 𝑋 = 𝑌𝑌 𝑋 ) )
10 1 2 posasymb ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌𝑌 𝑋 ) ↔ 𝑋 = 𝑌 ) )
11 10 biimpd ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌𝑌 𝑋 ) → 𝑋 = 𝑌 ) )
12 11 expdimp ( ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) → ( 𝑌 𝑋𝑋 = 𝑌 ) )
13 9 12 impbid ( ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) → ( 𝑋 = 𝑌𝑌 𝑋 ) )
14 13 necon3abid ( ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) → ( 𝑋𝑌 ↔ ¬ 𝑌 𝑋 ) )
15 14 pm5.32da ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌𝑋𝑌 ) ↔ ( 𝑋 𝑌 ∧ ¬ 𝑌 𝑋 ) ) )
16 4 15 bitrd ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 𝑌 ∧ ¬ 𝑌 𝑋 ) ) )