Metamath Proof Explorer
Description: Given, a,b,d, and "definitions" for c, e, f: f is demonstrated.
(Contributed by Jarvin Udandy, 8-Sep-2020)
|
|
Ref |
Expression |
|
Hypotheses |
plvcofph.1 |
⊢ ( 𝜒 ↔ ( ( ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜑 ) → ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ∧ ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ) |
|
|
plvcofph.2 |
⊢ ( 𝜏 ↔ ( ( 𝜒 → 𝜃 ) ∧ ( 𝜑 ↔ 𝜒 ) ∧ ( ( 𝜑 → 𝜓 ) → ( 𝜓 ↔ 𝜃 ) ) ) ) |
|
|
plvcofph.3 |
⊢ ( 𝜂 ↔ ( 𝜒 ∧ 𝜏 ) ) |
|
|
plvcofph.4 |
⊢ 𝜑 |
|
|
plvcofph.5 |
⊢ 𝜓 |
|
|
plvcofph.6 |
⊢ 𝜃 |
|
Assertion |
plvcofph |
⊢ 𝜂 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
plvcofph.1 |
⊢ ( 𝜒 ↔ ( ( ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜑 ) → ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ∧ ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ) |
2 |
|
plvcofph.2 |
⊢ ( 𝜏 ↔ ( ( 𝜒 → 𝜃 ) ∧ ( 𝜑 ↔ 𝜒 ) ∧ ( ( 𝜑 → 𝜓 ) → ( 𝜓 ↔ 𝜃 ) ) ) ) |
3 |
|
plvcofph.3 |
⊢ ( 𝜂 ↔ ( 𝜒 ∧ 𝜏 ) ) |
4 |
|
plvcofph.4 |
⊢ 𝜑 |
5 |
|
plvcofph.5 |
⊢ 𝜓 |
6 |
|
plvcofph.6 |
⊢ 𝜃 |
7 |
1 4 5
|
plcofph |
⊢ 𝜒 |
8 |
2 4 5 7 6
|
pldofph |
⊢ 𝜏 |
9 |
7 8
|
pm3.2i |
⊢ ( 𝜒 ∧ 𝜏 ) |
10 |
3
|
bicomi |
⊢ ( ( 𝜒 ∧ 𝜏 ) ↔ 𝜂 ) |
11 |
10
|
biimpi |
⊢ ( ( 𝜒 ∧ 𝜏 ) → 𝜂 ) |
12 |
9 11
|
ax-mp |
⊢ 𝜂 |