Metamath Proof Explorer


Theorem plvcofph

Description: Given, a,b,d, and "definitions" for c, e, f: f is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020)

Ref Expression
Hypotheses plvcofph.1 ( 𝜒 ↔ ( ( ( ( 𝜑𝜓 ) ↔ 𝜑 ) → ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ∧ ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) )
plvcofph.2 ( 𝜏 ↔ ( ( 𝜒𝜃 ) ∧ ( 𝜑𝜒 ) ∧ ( ( 𝜑𝜓 ) → ( 𝜓𝜃 ) ) ) )
plvcofph.3 ( 𝜂 ↔ ( 𝜒𝜏 ) )
plvcofph.4 𝜑
plvcofph.5 𝜓
plvcofph.6 𝜃
Assertion plvcofph 𝜂

Proof

Step Hyp Ref Expression
1 plvcofph.1 ( 𝜒 ↔ ( ( ( ( 𝜑𝜓 ) ↔ 𝜑 ) → ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ∧ ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) )
2 plvcofph.2 ( 𝜏 ↔ ( ( 𝜒𝜃 ) ∧ ( 𝜑𝜒 ) ∧ ( ( 𝜑𝜓 ) → ( 𝜓𝜃 ) ) ) )
3 plvcofph.3 ( 𝜂 ↔ ( 𝜒𝜏 ) )
4 plvcofph.4 𝜑
5 plvcofph.5 𝜓
6 plvcofph.6 𝜃
7 1 4 5 plcofph 𝜒
8 2 4 5 7 6 pldofph 𝜏
9 7 8 pm3.2i ( 𝜒𝜏 )
10 3 bicomi ( ( 𝜒𝜏 ) ↔ 𝜂 )
11 10 biimpi ( ( 𝜒𝜏 ) → 𝜂 )
12 9 11 ax-mp 𝜂