Metamath Proof Explorer
Description: Given, a,b,d, and "definitions" for c, e, f, g: g is demonstrated.
(Contributed by Jarvin Udandy, 8-Sep-2020)
|
|
Ref |
Expression |
|
Hypotheses |
plvcofphax.1 |
⊢ ( 𝜒 ↔ ( ( ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜑 ) → ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ∧ ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ) |
|
|
plvcofphax.2 |
⊢ ( 𝜏 ↔ ( ( 𝜒 → 𝜃 ) ∧ ( 𝜑 ↔ 𝜒 ) ∧ ( ( 𝜑 → 𝜓 ) → ( 𝜓 ↔ 𝜃 ) ) ) ) |
|
|
plvcofphax.3 |
⊢ ( 𝜂 ↔ ( 𝜒 ∧ 𝜏 ) ) |
|
|
plvcofphax.4 |
⊢ 𝜑 |
|
|
plvcofphax.5 |
⊢ 𝜓 |
|
|
plvcofphax.6 |
⊢ 𝜃 |
|
|
plvcofphax.7 |
⊢ ( 𝜁 ↔ ¬ ( 𝜓 ∧ ¬ 𝜏 ) ) |
|
Assertion |
plvcofphax |
⊢ 𝜁 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plvcofphax.1 |
⊢ ( 𝜒 ↔ ( ( ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜑 ) → ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ∧ ( 𝜑 ∧ ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) ) ) |
| 2 |
|
plvcofphax.2 |
⊢ ( 𝜏 ↔ ( ( 𝜒 → 𝜃 ) ∧ ( 𝜑 ↔ 𝜒 ) ∧ ( ( 𝜑 → 𝜓 ) → ( 𝜓 ↔ 𝜃 ) ) ) ) |
| 3 |
|
plvcofphax.3 |
⊢ ( 𝜂 ↔ ( 𝜒 ∧ 𝜏 ) ) |
| 4 |
|
plvcofphax.4 |
⊢ 𝜑 |
| 5 |
|
plvcofphax.5 |
⊢ 𝜓 |
| 6 |
|
plvcofphax.6 |
⊢ 𝜃 |
| 7 |
|
plvcofphax.7 |
⊢ ( 𝜁 ↔ ¬ ( 𝜓 ∧ ¬ 𝜏 ) ) |
| 8 |
1 4 5
|
plcofph |
⊢ 𝜒 |
| 9 |
2 4 5 8 6
|
pldofph |
⊢ 𝜏 |
| 10 |
5 9
|
pm3.2i |
⊢ ( 𝜓 ∧ 𝜏 ) |
| 11 |
|
pm3.4 |
⊢ ( ( 𝜓 ∧ 𝜏 ) → ( 𝜓 → 𝜏 ) ) |
| 12 |
10 11
|
ax-mp |
⊢ ( 𝜓 → 𝜏 ) |
| 13 |
|
iman |
⊢ ( ( 𝜓 → 𝜏 ) ↔ ¬ ( 𝜓 ∧ ¬ 𝜏 ) ) |
| 14 |
13
|
biimpi |
⊢ ( ( 𝜓 → 𝜏 ) → ¬ ( 𝜓 ∧ ¬ 𝜏 ) ) |
| 15 |
12 14
|
ax-mp |
⊢ ¬ ( 𝜓 ∧ ¬ 𝜏 ) |
| 16 |
7
|
bicomi |
⊢ ( ¬ ( 𝜓 ∧ ¬ 𝜏 ) ↔ 𝜁 ) |
| 17 |
16
|
biimpi |
⊢ ( ¬ ( 𝜓 ∧ ¬ 𝜏 ) → 𝜁 ) |
| 18 |
15 17
|
ax-mp |
⊢ 𝜁 |