| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-0p | 
							⊢ 0𝑝  =  ( ℂ  ×  { 0 } )  | 
						
						
							| 2 | 
							
								
							 | 
							id | 
							⊢ ( 𝑆  ⊆  ℂ  →  𝑆  ⊆  ℂ )  | 
						
						
							| 3 | 
							
								
							 | 
							0cnd | 
							⊢ ( 𝑆  ⊆  ℂ  →  0  ∈  ℂ )  | 
						
						
							| 4 | 
							
								3
							 | 
							snssd | 
							⊢ ( 𝑆  ⊆  ℂ  →  { 0 }  ⊆  ℂ )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							unssd | 
							⊢ ( 𝑆  ⊆  ℂ  →  ( 𝑆  ∪  { 0 } )  ⊆  ℂ )  | 
						
						
							| 6 | 
							
								
							 | 
							ssun2 | 
							⊢ { 0 }  ⊆  ( 𝑆  ∪  { 0 } )  | 
						
						
							| 7 | 
							
								
							 | 
							c0ex | 
							⊢ 0  ∈  V  | 
						
						
							| 8 | 
							
								7
							 | 
							snss | 
							⊢ ( 0  ∈  ( 𝑆  ∪  { 0 } )  ↔  { 0 }  ⊆  ( 𝑆  ∪  { 0 } ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							mpbir | 
							⊢ 0  ∈  ( 𝑆  ∪  { 0 } )  | 
						
						
							| 10 | 
							
								
							 | 
							plyconst | 
							⊢ ( ( ( 𝑆  ∪  { 0 } )  ⊆  ℂ  ∧  0  ∈  ( 𝑆  ∪  { 0 } ) )  →  ( ℂ  ×  { 0 } )  ∈  ( Poly ‘ ( 𝑆  ∪  { 0 } ) ) )  | 
						
						
							| 11 | 
							
								5 9 10
							 | 
							sylancl | 
							⊢ ( 𝑆  ⊆  ℂ  →  ( ℂ  ×  { 0 } )  ∈  ( Poly ‘ ( 𝑆  ∪  { 0 } ) ) )  | 
						
						
							| 12 | 
							
								1 11
							 | 
							eqeltrid | 
							⊢ ( 𝑆  ⊆  ℂ  →  0𝑝  ∈  ( Poly ‘ ( 𝑆  ∪  { 0 } ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							plyun0 | 
							⊢ ( Poly ‘ ( 𝑆  ∪  { 0 } ) )  =  ( Poly ‘ 𝑆 )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							eleqtrdi | 
							⊢ ( 𝑆  ⊆  ℂ  →  0𝑝  ∈  ( Poly ‘ 𝑆 ) )  |