| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-0p | ⊢ 0𝑝  =  ( ℂ  ×  { 0 } ) | 
						
							| 2 |  | id | ⊢ ( 𝑆  ⊆  ℂ  →  𝑆  ⊆  ℂ ) | 
						
							| 3 |  | 0cnd | ⊢ ( 𝑆  ⊆  ℂ  →  0  ∈  ℂ ) | 
						
							| 4 | 3 | snssd | ⊢ ( 𝑆  ⊆  ℂ  →  { 0 }  ⊆  ℂ ) | 
						
							| 5 | 2 4 | unssd | ⊢ ( 𝑆  ⊆  ℂ  →  ( 𝑆  ∪  { 0 } )  ⊆  ℂ ) | 
						
							| 6 |  | ssun2 | ⊢ { 0 }  ⊆  ( 𝑆  ∪  { 0 } ) | 
						
							| 7 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 8 | 7 | snss | ⊢ ( 0  ∈  ( 𝑆  ∪  { 0 } )  ↔  { 0 }  ⊆  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 9 | 6 8 | mpbir | ⊢ 0  ∈  ( 𝑆  ∪  { 0 } ) | 
						
							| 10 |  | plyconst | ⊢ ( ( ( 𝑆  ∪  { 0 } )  ⊆  ℂ  ∧  0  ∈  ( 𝑆  ∪  { 0 } ) )  →  ( ℂ  ×  { 0 } )  ∈  ( Poly ‘ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 11 | 5 9 10 | sylancl | ⊢ ( 𝑆  ⊆  ℂ  →  ( ℂ  ×  { 0 } )  ∈  ( Poly ‘ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 12 | 1 11 | eqeltrid | ⊢ ( 𝑆  ⊆  ℂ  →  0𝑝  ∈  ( Poly ‘ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 13 |  | plyun0 | ⊢ ( Poly ‘ ( 𝑆  ∪  { 0 } ) )  =  ( Poly ‘ 𝑆 ) | 
						
							| 14 | 12 13 | eleqtrdi | ⊢ ( 𝑆  ⊆  ℂ  →  0𝑝  ∈  ( Poly ‘ 𝑆 ) ) |