| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply10s0.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | ply10s0.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | ply10s0.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 4 |  | ply10s0.e | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 | 1 | ply1sca | ⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 8 | 4 7 | eqtrid | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →   0   =  ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  (  0   ∗  𝑀 )  =  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) )  ∗  𝑀 ) ) | 
						
							| 10 | 1 | ply1lmod | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  LMod ) | 
						
							| 11 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 12 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 13 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 14 | 2 11 3 12 13 | lmod0vs | ⊢ ( ( 𝑃  ∈  LMod  ∧  𝑀  ∈  𝐵 )  →  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) )  ∗  𝑀 )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 15 | 10 14 | sylan | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) )  ∗  𝑀 )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 16 | 9 15 | eqtrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  (  0   ∗  𝑀 )  =  ( 0g ‘ 𝑃 ) ) |