Step |
Hyp |
Ref |
Expression |
1 |
|
ply10s0.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply10s0.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
ply10s0.m |
⊢ ∗ = ( ·𝑠 ‘ 𝑃 ) |
4 |
|
ply10s0.e |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
7 |
6
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
8 |
4 7
|
eqtrid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 0 = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
9 |
8
|
oveq1d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 0 ∗ 𝑀 ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∗ 𝑀 ) ) |
10 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
11 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
12 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) |
13 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
14 |
2 11 3 12 13
|
lmod0vs |
⊢ ( ( 𝑃 ∈ LMod ∧ 𝑀 ∈ 𝐵 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∗ 𝑀 ) = ( 0g ‘ 𝑃 ) ) |
15 |
10 14
|
sylan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∗ 𝑀 ) = ( 0g ‘ 𝑃 ) ) |
16 |
9 15
|
eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 0 ∗ 𝑀 ) = ( 0g ‘ 𝑃 ) ) |