Step |
Hyp |
Ref |
Expression |
1 |
|
ply1ascl.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1ascl.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
3 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
4 |
|
eqid |
⊢ ( Scalar ‘ ( 1o mPoly 𝑅 ) ) = ( Scalar ‘ ( 1o mPoly 𝑅 ) ) |
5 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ V → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑅 ∈ V → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
7 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
8 |
|
1on |
⊢ 1o ∈ On |
9 |
8
|
a1i |
⊢ ( 𝑅 ∈ V → 1o ∈ On ) |
10 |
|
id |
⊢ ( 𝑅 ∈ V → 𝑅 ∈ V ) |
11 |
7 9 10
|
mplsca |
⊢ ( 𝑅 ∈ V → 𝑅 = ( Scalar ‘ ( 1o mPoly 𝑅 ) ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝑅 ∈ V → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ ( 1o mPoly 𝑅 ) ) ) ) |
13 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
14 |
1 7 13
|
ply1vsca |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ ( 1o mPoly 𝑅 ) ) |
15 |
14
|
a1i |
⊢ ( 𝑅 ∈ V → ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ ( 1o mPoly 𝑅 ) ) ) |
16 |
15
|
oveqdr |
⊢ ( ( 𝑅 ∈ V ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ V ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( 1o mPoly 𝑅 ) ) 𝑦 ) ) |
17 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
18 |
7 1 17
|
ply1mpl1 |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ ( 1o mPoly 𝑅 ) ) |
19 |
18
|
a1i |
⊢ ( 𝑅 ∈ V → ( 1r ‘ 𝑃 ) = ( 1r ‘ ( 1o mPoly 𝑅 ) ) ) |
20 |
|
fvexd |
⊢ ( 𝑅 ∈ V → ( 1r ‘ 𝑃 ) ∈ V ) |
21 |
3 4 6 12 16 19 20
|
asclpropd |
⊢ ( 𝑅 ∈ V → ( algSc ‘ 𝑃 ) = ( algSc ‘ ( 1o mPoly 𝑅 ) ) ) |
22 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ∅ ) |
23 |
1 22
|
eqtrid |
⊢ ( ¬ 𝑅 ∈ V → 𝑃 = ∅ ) |
24 |
|
reldmmpl |
⊢ Rel dom mPoly |
25 |
24
|
ovprc2 |
⊢ ( ¬ 𝑅 ∈ V → ( 1o mPoly 𝑅 ) = ∅ ) |
26 |
23 25
|
eqtr4d |
⊢ ( ¬ 𝑅 ∈ V → 𝑃 = ( 1o mPoly 𝑅 ) ) |
27 |
26
|
fveq2d |
⊢ ( ¬ 𝑅 ∈ V → ( algSc ‘ 𝑃 ) = ( algSc ‘ ( 1o mPoly 𝑅 ) ) ) |
28 |
21 27
|
pm2.61i |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ ( 1o mPoly 𝑅 ) ) |
29 |
2 28
|
eqtri |
⊢ 𝐴 = ( algSc ‘ ( 1o mPoly 𝑅 ) ) |