| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1ascl.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | ply1ascl.a | ⊢ 𝐴  =  ( algSc ‘ 𝑃 ) | 
						
							| 3 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 4 |  | eqid | ⊢ ( Scalar ‘ ( 1o  mPoly  𝑅 ) )  =  ( Scalar ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 5 | 1 | ply1sca | ⊢ ( 𝑅  ∈  V  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝑅  ∈  V  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( 1o  mPoly  𝑅 )  =  ( 1o  mPoly  𝑅 ) | 
						
							| 8 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑅  ∈  V  →  1o  ∈  On ) | 
						
							| 10 |  | id | ⊢ ( 𝑅  ∈  V  →  𝑅  ∈  V ) | 
						
							| 11 | 7 9 10 | mplsca | ⊢ ( 𝑅  ∈  V  →  𝑅  =  ( Scalar ‘ ( 1o  mPoly  𝑅 ) ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( 𝑅  ∈  V  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ ( 1o  mPoly  𝑅 ) ) ) ) | 
						
							| 13 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 14 | 1 7 13 | ply1vsca | ⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 15 | 14 | a1i | ⊢ ( 𝑅  ∈  V  →  (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ ( 1o  mPoly  𝑅 ) ) ) | 
						
							| 16 | 15 | oveqdr | ⊢ ( ( 𝑅  ∈  V  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  V ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑃 ) 𝑦 )  =  ( 𝑥 (  ·𝑠  ‘ ( 1o  mPoly  𝑅 ) ) 𝑦 ) ) | 
						
							| 17 |  | eqid | ⊢ ( 1r ‘ 𝑃 )  =  ( 1r ‘ 𝑃 ) | 
						
							| 18 | 7 1 17 | ply1mpl1 | ⊢ ( 1r ‘ 𝑃 )  =  ( 1r ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 19 | 18 | a1i | ⊢ ( 𝑅  ∈  V  →  ( 1r ‘ 𝑃 )  =  ( 1r ‘ ( 1o  mPoly  𝑅 ) ) ) | 
						
							| 20 |  | fvexd | ⊢ ( 𝑅  ∈  V  →  ( 1r ‘ 𝑃 )  ∈  V ) | 
						
							| 21 | 3 4 6 12 16 19 20 | asclpropd | ⊢ ( 𝑅  ∈  V  →  ( algSc ‘ 𝑃 )  =  ( algSc ‘ ( 1o  mPoly  𝑅 ) ) ) | 
						
							| 22 |  | fvprc | ⊢ ( ¬  𝑅  ∈  V  →  ( Poly1 ‘ 𝑅 )  =  ∅ ) | 
						
							| 23 | 1 22 | eqtrid | ⊢ ( ¬  𝑅  ∈  V  →  𝑃  =  ∅ ) | 
						
							| 24 |  | reldmmpl | ⊢ Rel  dom   mPoly | 
						
							| 25 | 24 | ovprc2 | ⊢ ( ¬  𝑅  ∈  V  →  ( 1o  mPoly  𝑅 )  =  ∅ ) | 
						
							| 26 | 23 25 | eqtr4d | ⊢ ( ¬  𝑅  ∈  V  →  𝑃  =  ( 1o  mPoly  𝑅 ) ) | 
						
							| 27 | 26 | fveq2d | ⊢ ( ¬  𝑅  ∈  V  →  ( algSc ‘ 𝑃 )  =  ( algSc ‘ ( 1o  mPoly  𝑅 ) ) ) | 
						
							| 28 | 21 27 | pm2.61i | ⊢ ( algSc ‘ 𝑃 )  =  ( algSc ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 29 | 2 28 | eqtri | ⊢ 𝐴  =  ( algSc ‘ ( 1o  mPoly  𝑅 ) ) |