Step |
Hyp |
Ref |
Expression |
1 |
|
ply1ascl0.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1ascl0.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
3 |
|
ply1ascl0.o |
⊢ 𝑂 = ( 0g ‘ 𝑅 ) |
4 |
|
ply1ascl0.1 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
5 |
|
ply1ascl0.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑊 ) ) |
7 |
5 6
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑊 ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
9 |
3 8
|
eqtrid |
⊢ ( 𝜑 → 𝑂 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑊 ) ‘ 𝑂 ) = ( ( algSc ‘ 𝑊 ) ‘ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
11 |
|
eqid |
⊢ ( algSc ‘ 𝑊 ) = ( algSc ‘ 𝑊 ) |
12 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
13 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑊 ∈ LMod ) |
14 |
5 13
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
15 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑊 ∈ Ring ) |
16 |
5 15
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
17 |
11 12 14 16
|
ascl0 |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑊 ) ‘ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) = ( 0g ‘ 𝑊 ) ) |
18 |
10 17
|
eqtrd |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑊 ) ‘ 𝑂 ) = ( 0g ‘ 𝑊 ) ) |
19 |
2
|
fveq1i |
⊢ ( 𝐴 ‘ 𝑂 ) = ( ( algSc ‘ 𝑊 ) ‘ 𝑂 ) |
20 |
18 19 4
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑂 ) = 0 ) |