Metamath Proof Explorer


Theorem ply1ascl0

Description: The zero scalar as a polynomial. (Contributed by Thierry Arnoux, 20-Jan-2025)

Ref Expression
Hypotheses ply1ascl0.w 𝑊 = ( Poly1𝑅 )
ply1ascl0.a 𝐴 = ( algSc ‘ 𝑊 )
ply1ascl0.o 𝑂 = ( 0g𝑅 )
ply1ascl0.1 0 = ( 0g𝑊 )
ply1ascl0.r ( 𝜑𝑅 ∈ Ring )
Assertion ply1ascl0 ( 𝜑 → ( 𝐴𝑂 ) = 0 )

Proof

Step Hyp Ref Expression
1 ply1ascl0.w 𝑊 = ( Poly1𝑅 )
2 ply1ascl0.a 𝐴 = ( algSc ‘ 𝑊 )
3 ply1ascl0.o 𝑂 = ( 0g𝑅 )
4 ply1ascl0.1 0 = ( 0g𝑊 )
5 ply1ascl0.r ( 𝜑𝑅 ∈ Ring )
6 1 ply1sca ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑊 ) )
7 5 6 syl ( 𝜑𝑅 = ( Scalar ‘ 𝑊 ) )
8 7 fveq2d ( 𝜑 → ( 0g𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
9 3 8 eqtrid ( 𝜑𝑂 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )
10 9 fveq2d ( 𝜑 → ( ( algSc ‘ 𝑊 ) ‘ 𝑂 ) = ( ( algSc ‘ 𝑊 ) ‘ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) )
11 eqid ( algSc ‘ 𝑊 ) = ( algSc ‘ 𝑊 )
12 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
13 1 ply1lmod ( 𝑅 ∈ Ring → 𝑊 ∈ LMod )
14 5 13 syl ( 𝜑𝑊 ∈ LMod )
15 1 ply1ring ( 𝑅 ∈ Ring → 𝑊 ∈ Ring )
16 5 15 syl ( 𝜑𝑊 ∈ Ring )
17 11 12 14 16 ascl0 ( 𝜑 → ( ( algSc ‘ 𝑊 ) ‘ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) = ( 0g𝑊 ) )
18 10 17 eqtrd ( 𝜑 → ( ( algSc ‘ 𝑊 ) ‘ 𝑂 ) = ( 0g𝑊 ) )
19 2 fveq1i ( 𝐴𝑂 ) = ( ( algSc ‘ 𝑊 ) ‘ 𝑂 )
20 18 19 4 3eqtr4g ( 𝜑 → ( 𝐴𝑂 ) = 0 )