Metamath Proof Explorer


Theorem ply1ascl1

Description: The multiplicative identity scalar as a univariate polynomial. (Contributed by Thierry Arnoux, 20-Jan-2025)

Ref Expression
Hypotheses ply1ascl1.w 𝑊 = ( Poly1𝑅 )
ply1ascl1.a 𝐴 = ( algSc ‘ 𝑊 )
ply1ascl1.i 𝐼 = ( 1r𝑅 )
ply1ascl1.1 1 = ( 1r𝑊 )
ply1ascl1.r ( 𝜑𝑅 ∈ Ring )
Assertion ply1ascl1 ( 𝜑 → ( 𝐴𝐼 ) = 1 )

Proof

Step Hyp Ref Expression
1 ply1ascl1.w 𝑊 = ( Poly1𝑅 )
2 ply1ascl1.a 𝐴 = ( algSc ‘ 𝑊 )
3 ply1ascl1.i 𝐼 = ( 1r𝑅 )
4 ply1ascl1.1 1 = ( 1r𝑊 )
5 ply1ascl1.r ( 𝜑𝑅 ∈ Ring )
6 1 ply1sca ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑊 ) )
7 5 6 syl ( 𝜑𝑅 = ( Scalar ‘ 𝑊 ) )
8 7 fveq2d ( 𝜑 → ( 1r𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) )
9 3 8 eqtrid ( 𝜑𝐼 = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) )
10 9 fveq2d ( 𝜑 → ( ( algSc ‘ 𝑊 ) ‘ 𝐼 ) = ( ( algSc ‘ 𝑊 ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) )
11 eqid ( algSc ‘ 𝑊 ) = ( algSc ‘ 𝑊 )
12 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
13 1 ply1lmod ( 𝑅 ∈ Ring → 𝑊 ∈ LMod )
14 5 13 syl ( 𝜑𝑊 ∈ LMod )
15 1 ply1ring ( 𝑅 ∈ Ring → 𝑊 ∈ Ring )
16 5 15 syl ( 𝜑𝑊 ∈ Ring )
17 11 12 14 16 ascl1 ( 𝜑 → ( ( algSc ‘ 𝑊 ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) = ( 1r𝑊 ) )
18 10 17 eqtrd ( 𝜑 → ( ( algSc ‘ 𝑊 ) ‘ 𝐼 ) = ( 1r𝑊 ) )
19 2 fveq1i ( 𝐴𝐼 ) = ( ( algSc ‘ 𝑊 ) ‘ 𝐼 )
20 18 19 4 3eqtr4g ( 𝜑 → ( 𝐴𝐼 ) = 1 )