| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1ascl1.w | ⊢ 𝑊  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | ply1ascl1.a | ⊢ 𝐴  =  ( algSc ‘ 𝑊 ) | 
						
							| 3 |  | ply1ascl1.i | ⊢ 𝐼  =  ( 1r ‘ 𝑅 ) | 
						
							| 4 |  | ply1ascl1.1 | ⊢  1   =  ( 1r ‘ 𝑊 ) | 
						
							| 5 |  | ply1ascl1.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 6 | 1 | ply1sca | ⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝜑  →  ( 1r ‘ 𝑅 )  =  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 9 | 3 8 | eqtrid | ⊢ ( 𝜑  →  𝐼  =  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝜑  →  ( ( algSc ‘ 𝑊 ) ‘ 𝐼 )  =  ( ( algSc ‘ 𝑊 ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( algSc ‘ 𝑊 )  =  ( algSc ‘ 𝑊 ) | 
						
							| 12 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 13 | 1 | ply1lmod | ⊢ ( 𝑅  ∈  Ring  →  𝑊  ∈  LMod ) | 
						
							| 14 | 5 13 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 15 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑊  ∈  Ring ) | 
						
							| 16 | 5 15 | syl | ⊢ ( 𝜑  →  𝑊  ∈  Ring ) | 
						
							| 17 | 11 12 14 16 | ascl1 | ⊢ ( 𝜑  →  ( ( algSc ‘ 𝑊 ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) )  =  ( 1r ‘ 𝑊 ) ) | 
						
							| 18 | 10 17 | eqtrd | ⊢ ( 𝜑  →  ( ( algSc ‘ 𝑊 ) ‘ 𝐼 )  =  ( 1r ‘ 𝑊 ) ) | 
						
							| 19 | 2 | fveq1i | ⊢ ( 𝐴 ‘ 𝐼 )  =  ( ( algSc ‘ 𝑊 ) ‘ 𝐼 ) | 
						
							| 20 | 18 19 4 | 3eqtr4g | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝐼 )  =   1  ) |